

KUKA Robot Group

Communication

DeviceNet

For KR C2 edition2005 and KR C2 sr

Issued: 13.12.2007 Version: LastRecent en

© Copyright 2007 KUKA Roboter GmbH Zugspitzstraße 140 D-86165 Augsburg Germany

This documentation or excerpts therefrom may not be reproduced or disclosed to third parties without the express permission of the KUKA ROBOT GROUP.

Other functions not described in this documentation may be operable in the controller. The user has no claims to these functions, however, in the case of a replacement or service work.

We have checked the content of this documentation for conformity with the hardware and software described. Nevertheless, discrepancies cannot be precluded, for which reason we are not able to guarantee total conformity. The information in this documentation is checked on a regular basis, however, and necessary corrections will be incorporated in the subsequent edition.

Subject to technical alterations without an effect on the function.

KIM-PS4-DOC

Publikation:	Pub_DeviceNet für KR C2 edition2005 und KR C2 sr en
Buchstruktur:	DeviceNet für KR C2 edition2005 und KR C2 sr V0.1
Label:	LastRecent

Contents

1	Introduction	5
1.1	Target group	5
1.2	Representation of warnings and notes	5
1.3	Terms used	5
2	Product description	7
2.1	Overview	7
2.2	Data transmission	7
2.3	MFC card	7
2.4	Multi-power tap option (for KR C2 edition2005)	9
2.5	DeviceNet card	9
2.5.1	Parallel operation of DeviceNet cards (only with KR C2 edition2005)	11
2.6	Riser Cage	13
2.7	EDS file	14
2.8	DN-DIO 1620 module (for KR C2 edition2005)	15
2.9	Bus modules	16
3	Installation	17
3 1	Overview	17
3.2	Connectors	17
33	Cables	18
3.0	Grounding	10
3.5	Cable length	10
3.5		20
5.0		20
4	DeviceNet connection	23
4.1	Connection via MFC card	23
4.2	Connection via DeviceNet card	23
5	Configuration	25
- 4		
5.1	Configuring a DeviceNet connection via the MFC card	25
5.1 5.2	Configuring a DeviceNet connection via the MFC card Configuring the file DEVNET.INI	25 25
5.1 5.2 5.3	Configuring a DeviceNet connection via the MFC card Configuring the file DEVNET.INI Configuring the IOSYS.INI file	25 25 26
5.1 5.2 5.3 5.4	Configuring a DeviceNet connection via the MFC card Configuring the file DEVNET.INI Configuring the IOSYS.INI file Configuration via Telnet commands	25 25 26 27
5.1 5.2 5.3 5.4 5.4.1	Configuring a DeviceNet connection via the MFC card Configuring the file DEVNET.INI Configuring the IOSYS.INI file Configuration via Telnet commands Opening Telnet	25 25 26 27 27
5.1 5.2 5.3 5.4 5.4.1 5.4.2	Configuring a DeviceNet connection via the MFC card Configuring the file DEVNET.INI Configuring the IOSYS.INI file Configuration via Telnet commands Opening Telnet Changing the baud rate	25 25 26 27 27 27
5.1 5.2 5.3 5.4 5.4.1 5.4.2 5.4.3	Configuring a DeviceNet connection via the MFC card	25 25 26 27 27 27 28
5.1 5.2 5.3 5.4 5.4.1 5.4.2 5.4.2 5.4.3 5.5	Configuring a DeviceNet connection via the MFC card	25 25 26 27 27 27 28 28
5.1 5.2 5.3 5.4 5.4.1 5.4.2 5.4.3 5.5 5.6	Configuring a DeviceNet connection via the MFC card Configuring the file DEVNET.INI Configuring the IOSYS.INI file Configuration via Telnet commands Opening Telnet Changing the baud rate Changing the baud rate Changing the DeviceNet card Configuring the file DNSC_xCO.INI	25 25 26 27 27 27 28 28 28 29
5.1 5.2 5.3 5.4 5.4.1 5.4.2 5.4.3 5.5 5.6 5.7	Configuring a DeviceNet connection via the MFC card	25 26 27 27 27 28 28 28 29 30
5.1 5.2 5.3 5.4 5.4.1 5.4.2 5.4.3 5.5 5.6 5.7 5.8	Configuring a DeviceNet connection via the MFC card Configuring the file DEVNET.INI Configuring the IOSYS.INI file Configuration via Telnet commands Opening Telnet Changing the baud rate Changing the baud rate Changing the MACID Configuring the DeviceNet card Configuring the file DNSC_xCO.INI Configuring the file DNSC_xSL.INI Configuring the file IOSYS.INI	25 25 26 27 27 27 28 28 28 29 30 32
5.1 5.2 5.3 5.4 5.4.1 5.4.2 5.4.3 5.5 5.6 5.7 5.8 5.9	Configuring a DeviceNet connection via the MFC card	25 26 27 27 27 28 28 29 30 32 33
5.1 5.2 5.3 5.4 5.4.1 5.4.2 5.4.3 5.5 5.6 5.7 5.8 5.9 5.9.1	Configuring a DeviceNet connection via the MFC card Configuring the file DEVNET.INI Configuring the IOSYS.INI file Configuration via Telnet commands Opening Telnet Changing the baud rate Changing the baud rate Changing the MACID Configuring the DeviceNet card Configuring the file DNSC_xCO.INI Configuring the file DNSC_xSL.INI Configuring the file IOSYS.INI Configuring the file IOSYS.INI	25 25 26 27 27 27 28 28 29 30 32 33 33
5.1 5.2 5.3 5.4 5.4.1 5.4.2 5.4.3 5.5 5.6 5.7 5.8 5.9 5.9.1 5.9.2	Configuring a DeviceNet connection via the MFC card	25 26 27 27 27 28 28 29 30 32 33 33 33
5.1 5.2 5.3 5.4 5.4.1 5.4.2 5.4.3 5.5 5.6 5.7 5.8 5.9 5.9.1 5.9.2 5.9.3	Configuring a DeviceNet connection via the MFC card	25 26 27 27 27 28 28 29 30 32 33 33 33 33 33

6.1	Assigning digital inputs and outputs	35
6.2	Assigning analog inputs and outputs	36
6.3	Offset-Table	38
7	Example	41
7.1	DeviceNet connection via the MFC card	41
7.2	DeviceNet connection via the DeviceNet card	41
7.3	Assigning digital inputs/outputs	43
7.4	Assigning analog inputs/outputs	43
7.5	Generating a log file, MFC configuration	44
8	Diagnosis	45
8.1	Error display	45
8.2	Checking the hardware	48
8.3	Telnet diagnosis, MFC card	48
8.3.1	Opening Telnet	48
8.3.2	Polling devices	49
8.3.3	Reading I/O data	49
8.4	Telnet diagnosis	50
8.4.1	Opening Telnet	51
8.4.2	Polling the device status	51
8.4.3	Polling the DeviceNet status	51
8.4.4	Reading I/O data	52
8.4.5	Status code	53
9	KUKA Service	55
9.1	Requesting support	55
9.2	KUKA Customer Support	55
	Index	61

1 Introduction

1.1 Target group

This documentation is aimed at users with the following knowledge and skills:

- Advanced KRL programming skills
- Advanced knowledge of the robot controller system
- Advanced knowledge of field buses

For optimal use of our products, we recommend that our customers take part in a course of training at KUKA College. Information about the training program can be found at www.kuka.com or can be obtained directly from our subsidiaries.

1.2 Representation of warnings and notes

served.

Safety

Danger!

This warning means that death, severe physical injury or substantial material damage **will** occur, if no precautions are taken.

Warnings marked with this pictogram are relevant to safety and must be ob-

Warning!

Caution!

erences to further information.

This warning means that death, severe physical injury or substantial material damage **may** occur, if no precautions are taken.

This warning means that minor physical injuries or minor material damage **may** occur, if no precautions are taken.

Notes marked with this pictogram contain tips to make your work easier or ref-

Notes

Tips to make your work easier or references to further information.

1.3 Terms used

Term	Description		
CAN bus	The CAN bus or (Controller Area Network) is a field bus. It is an asynchronous, serial bus system for network control devices.		
DeviceNet	DeviceNet is a CAN-based field bus that is pri- marily used in automation technology.		
Trunk line	Main line for networking the bus system. The maximum cable length is dependent on the transmission rate.		
Drop line	Drop line to external bus devices. A drop line may not be more than 6 m long.		
Modules	DeviceNet modules, DeviceNet devices		
Configuration file	The configuration file is a text file. It contains the values of the parameters and settings.		

Term	Description
DEVNET.INI	The file DEVNET.INI is the configuration file of the DeviceNet driver. During configuration, the scan list is entered via the MFC card.
IOSYS.INI	The file IOSYS.INI is the configuration file of the I/O system. This is where the bus drivers are activated and the inputs and outputs of the individual bus devices are assigned.
EDS file	The functionality of the modules is defined in the EDS file (Electronic Data Sheet).
MACID	The MACID is the module address in the bus system. It may only be issued once.
Multi-power tap	Option for the KR C2 edition2005 robot control- ler. It provides the power supply for the CAN bus of the robot controller (MFC). In exceptional cases, it also supplies the PFO with power.
Scan list	The MACIDs of the individual bus devices are entered in the scan list.
Telnet	Telnet is a communications software package. Telnet commands can be used to modify the baud rate for each channel of the DeviceNet card and the MACIDs of the individual DeviceNet devices.
DeviceNet card	The DeviceNet card is a 16-bit PCI-CAN card with 2 independently active DeviceNet channels.
KUKA.HMI	KUKA.HMI is the KUKA user interface.
КСР	The KCP (KUKA Control Panel) teach pendant has all the functions required for operating and programming the robot system.
MFC	The multi-function card of the robot controller with a DeviceNet connection.
PLC	A PLC (programmable logic controller) is used in systems as a higher-level master module in the bus system.

2 Product description

2.1 Overview

DeviceNet enables the communication between the robot controller and the external periphery. The following cards may be installed in the robot controller:

- MFC card
- DeviceNet card (optional)

Properties

- Fast transmission of small amounts of data
- Configurable and parameterizable across the network
- Up to 64 devices in the network
- Diagnostic facilities
- Master, multimaster
- Transmission speed of 125, 250 and 500 kBaud (baud rate)
- Maximum 128 bytes of inputs and 128 bytes of outputs per DeviceNet device
- Maximum cable length 500 m (dependent on the transmission rate)

2.2 Data transmission

Description The

The field bus system consists of:

- Bus for transmission tasks (CAN bus)
- Bus protocol

The CAN bus is a serial bus system which allows all connected devices to transmit and receive. DeviceNet is a bus protocol variant.

With DeviceNet, all devices are connected in parallel (line structure), with the data cable and power supply for the bus interface in the I/O module integrated into a single cable.

2.3 MFC card

There is a DeviceNet connection on the MFC card. This card is contained as standard in every robot controller.

Fig. 2-1: MFC card

- 1 DeviceNet connection (X801: COMBICON, 5-contact)
- 2 Interface to CI3 board (X2: Sub-D, 26-contact)

Properties

- MFC-DeviceNet is always master with MACID 0
- Coupling/decoupling of modules not possible
- Online configuration not possible

Connections

There is a DeviceNet connection on the card (X801: COMBICON, 5-contact)

Fig. 2-2: MFC connection

Pin num- ber on X801	Designation	Description	
1	Ground	Supply voltage ground	
2	CAN Low	CAN Low	

Pin num- ber on X801	Designation	Description
3	Shield	Shield
4	CAN High	CAN High
5	+24 V	Supply voltage, +24 V

2.4 Multi-power tap option (for KR C2 edition2005)

The multi-power tap is an optional board for the KR C2 edition2005 robot controller with 2 functions:

- Central feed connection point for the 24 V DC voltage for DeviceNet
- Star hub, e.g. for bus cable (DeviceNet from MFC to multi-power tap)

With this option, the CAN bus available on the MFC card is extended to the distributor module A30, allowing the connection of 2 external devices. The module is supplied with power via the additional miniature circuit-breaker F22 (2 A).

Advantage:

- Simple connection option for bus devices (3x CAN bus, 2x 24 V DC)
- Expanded bus connection (different applications, additional devices)

Fig. 2-3: Multi-power tap

- A30 Designation for multi-power tap board
- X941 24 V DC power supply
- X942 24 V for diagnostic connector
- X943.1 Connection for MFC DeviceNet or LPDN scanner
- X943.2 Branch 1 (connection of an external device)
- X943.3 Branch 2 (connection of an external device)

Further information is contained in the KUKA documentation **Multi-power tap**.

2.5 DeviceNet card

The DeviceNet card is a 16-bit PCI-CAN card with 2 independently active DeviceNet channels. The DeviceNet card is optional.

There are different DeviceNet cards for the KR C2 edition2005 and KR C2 sr robot controllers. The functionality of the cards is identical.

Fig. 2-4: DeviceNet card, KR C2 edition2005

- 1 DeviceNet connection, channel 1 (X835: COMBICON, 5-contact)
- 2 DeviceNet connection, channel 2 (X836: COMBICON, 5-contact)

Fig. 2-5: DeviceNet card, KR C2 sr

- 1 DeviceNet connection, channel 1 (X835: COMBICON, 5-contact)
- 2 DeviceNet connection, channel 2 (X836: COMBICON, 5-contact)

Properties

- 2 independent DeviceNet channels
- Each channel can be master, slave or both
- Each channel has its own processor (386EX), memory and CAN interface
- The card is suitable for high bus utilization
- Online configuration possible
- Multimaster system possible
- Coupling/decoupling of modules possible

- All bus access types possible
- EDS file present on KUKA CD
- Certification by DeviceNet Vendor Association, Inc (ODVA)

Connections The card has 2 DeviceNet connections. DeviceNet channel 1 is at connection X835, channel 2 at connection X836. The pin assignment of both connectors is identical.

Fig. 2-6: DeviceNet card connections

Pin num- ber on X835, X836	Designation	Description
1	Ground	Supply voltage ground
2	CAN Low	CAN Low
3	Shield	Shield
4	CAN High	CAN High
5	+24 V	Supply voltage, +24 V

LEDs

The status of the card or network is indicated by means of LEDs (red/green). LEDs 1 and 2 are assigned to channel 1 and LEDs 3 and 4 to channel 2. (>>> 8.1 "Error display" page 45)

2.5.1 Parallel operation of DeviceNet cards (only with KR C2 edition2005)

With some robot controllers, up to 3 DeviceNet cards can be used. In this case, up to 6 DeviceNet channels are available. There are corresponding drivers and configuration files for each channel. The counting sequence is implemented using the PCI bus.

It is not possible to use multiple DeviceNet cards with the KR C2 sr and KR C3 robot controllers due to their compact design.

Caution!

Only certain slots and combinations are enabled in the robot controller for parallel operation of DeviceNet cards. Other combinations must not be used. Observe the slot allocation plan of the motherboard used in the circuit diagram.

In the following figure, slots 1, 2 and 6 of the KR C2 edition2005 are enabled for the DeviceNet cards.

Fig. 2-7: PCI slots

The PC slots can be fitted with the following plug-in cards:

Slot Plug-in card		
1	 Interbus card (FOC) (optional) 	
	 Interbus card (copper) (optional) 	
	DeviceNet card (optional)	
	 Profibus master/slave card (optional) 	
	 LPCN ControlNet card (optional) 	
	 CN_EthernetIP card (optional) 	
2	DeviceNet card (optional)	
3	KVGA card	
4	DSE-IBS-C33 AUX card (optional)	
5	MFC3 card	
6 Network card (optional)		
	DeviceNet card (optional)	
	 Profibus master/slave card (optional) 	
 LIBO-2PCI card (optional) 		
 KUKA modem card (optional) 		
7	free	

Installation

When operating two or three LPDN scanner cards in parallel, the assignment of the individual DeviceNet channels must be determined from the slot allocation. The following assignment applies:

- DeviceNet card 1: channel 1 and channel 2
- DeviceNet card 2: channel 3 and channel 4

DeviceNet card 3: channel 5 and channel 6

The corresponding driver files and INI files must be present for each card. When installing the second card subsequently, this means:

Copy from:	to:
[CD]:\Internat\KRCsetup\Driv- ers\LPDN\dnsc_1SI.ini	C:\Program Files\KRC\Drivers
[CD]:\Internat\KRCsetup\Driv- ers\LPDN\dnsc4drv.o	
[CD]:\Internat\KRCsetup\Driv- ers\LPDN\dnsc_3Co.ini	C:\Program Files\KRC\Init
[CD]:\Internat\KRCsetup\Driv- ers\LPDN\dnsc_4Co.ini	
[CD]:\Internat\KRCsetup\Driv- ers\LPDN\dnsc_3SI.ini	C:\Program Files\KRC\Init
[CD]:\Internat\KRCsetup\Driv- ers\LPDN\dnsc_4SI.ini	

Use the same procedure with a third card. By default, the log files and MACIDs of the scanners are numbered the same as the corresponding channels.

2.6 Riser Cage

Description The Riser Cage provides space for 5 PCI plug-in cards. The integrated network card forms the interface between the control unit and the power unit.

The following PC cards are plugged into the left-hand side of the Riser Cage:

- KVGA
- MFC3 Tech card

On the right-hand side of the Riser Cage are 3 PCI slots. The following PC cards can optionally be plugged in:

- Interbus PCI master
- Profibus PCI
- 3COM network card (Ethernet)
- DeviceNet card

Fig. 2-8: Riser Cage configuration

Slots

Item	Interface	ltem	Interface
1	Interbus Master/Slave card (optional)	4	Internal communications interface
2	Real-time or Windows net- work card (optional)	5	MFC3 Tech card
3	 Profibus card (optional) 	6	KVGA
	 Windows network card (optional) 		
	 DeviceNet card (option- al) 		

2.7 EDS file

For each DeviceNet module there is an EDS file (Electronic Data Sheet) in which the configuration and functionality of the module are defined. The EDS file is provided by the manufacturer of the DeviceNet module.

Description

Certain values from the EDS file are required for diagnosis:

- Vendor code (manufacturer code)
- Product type (module-specific data)
- Product code (module-specific data)

Example EDS file of the KUKA DeviceNet card:

:			
:			
[Device]			
	VendCode	=	418;
	VendName	=	"LP-Elektronik";
	ProdType	=	12;
	ProdTypeStr	=	"Communications Adapter";
	ProdCode	=	14;
	MajRev	=	2;
	MinRev	=	52;
	ProdName	=	"DeviceNet";
	Catalog	=	" ";
:			
:			

2.8 DN-DIO 1620 module (for KR C2 edition2005)

The DN-DIO 1620 module is a Group 2 Only DeviceNet slave module. It has 16 digital inputs and 20 digital outputs. Each input and output has its own status LED. Outputs 0 to 15 have a maximum load rating of 0.5 A, and outputs 16 to 19 have a maximum load rating of 2 A.

Fig. 2-9: DN-DIO 1620

- 1 DeviceNet connection
- 2 MACID setting (units position)
- 3 MACID setting (tens position)
- 4 Inputs, outputs, power supply

Use

Potential applications:

- I/O module in conjunction with the KCP2 and the CAN interface Only one module can be used.
 - Slave module of the MFC card or the DeviceNet card

This does not restrict its DeviceNet module functionalities in any way.

MACIDThe MACID is set by means of two rotary switches. Valid values are 0 to 63.If a setting from 64 to 99 is made, the value of the most recent setting will be
retained. The default value on delivery is 63.

For operation in conjunction with the CAN interface of the KCP2, the MACID must be set to 1.

Overview

If the software is configured via IOSYS.INI, the mechanical settings are overwritten.

Baud rateThe module supports baud rates of 125 kBaud, 250 kBaud and 500 kBaud. It
automatically detects the baud rate which is being used (auto baud).LEDsThe status of the card or network is indicated by means of bicolor LEDs (red/
green).

(>>> 8.1 "Error display" page 45)

2.9 Bus modules

Digital and/or analog input/output modules are used as slave devices in the DeviceNet system.

Properties

- Input/output modules
- All devices must have their own address, and this address must exist only once in the bus system.
- MACID and baud rate settings via rotary switches or DIP switches (address 0 to 63)
- Structure and setting mode are manufacturer-specific

Observe manufacturer information before connection, configuration and start-up.

3 Installation

3.1 Overview

DeviceNet cables are routed from one device to the next.

- The maximum power consumption of the DeviceNet master is 25 mA.
- The power consumption of the DeviceNet modules depends on the specific modules.
- The negative potential of the supply voltage must always be grounded.

Fig. 3-1: DeviceNet, connection example

- 1 24 V DC power supply
- 2 DeviceNet master connection
- 3 DeviceNet cable
- 4 DeviceNet cable (data)
- 5 DeviceNet cable (power supply)
- 6 DeviceNet connector
- 7 DeviceNet device

Many slave modules have only a single DeviceNet connection. These employ connectors which can be connected to two DeviceNet cables. The bus is not interrupted when they are disconnected.

3.2 Connectors

Fig. 3-2: DeviceNet connector

Connector	Pin	Connection
CombiCon	1	0 V power supply
	2	CAN Low signal
	3	Shield
	4	CAN High signal
	5	+24 V power supply
Micro Style	1	Shield
	2	+24 V power supply
	3	0 V power supply
	4	CAN High signal
	5	CAN Low signal
Mini style	1	Shield
	2	+24 V power supply
	3	0 V power supply
	4	CAN High signal
	5	CAN Low signal

3.3 Cables

Fig. 3-3: DeviceNet cable example

- 1 Thick cable
- 2 Thin cable

Thick cables are mainly used as main lines (trunk lines), while thin cables are used as drop lines.

Wire color	Meaning
Black	0 V power supply
Red	+24 V power supply
Bare	Shield
Blue	CAN Low signal
White	CAN High signal

The power supply in the DeviceNet cable may only be used for the bus interface in the I/O module. The outputs must be supplied with power separately.

3.4 Grounding

The shield of the DeviceNet cable must be grounded once. For preference, the shield is grounded in the robot controller.

Fig. 3-4: DeviceNet cable grounding

- 1 DeviceNet master connection (robot controller)
- 2 Shield (grounded)
- 3 DeviceNet device

3.5 Cable length

The maximum cable length is dependent on the transmission rate. The following applies here:

- 125 kbit/s max. cable length: 500 m
- 250 kbit/s max. cable length: 200 m
- 500 kbit/s max. cable length: 100 m

Fig. 3-5: Cable connection example

- 1 Trunk line
- 2 Drop line
- 3 T tap
- 4 Multiport tap

A drop line may not be more than 6 m long. KUKA recommendation: do not use drop lines.

KUKA

Fig. 3-6: Cable length example

To determine the maximum cable length, the longest communication distance between connections must be taken into consideration.

Distance	Calculation	Total
From A to C	1 + 3 + 50 + 6	60 m
From B to C	5 + 50 + 6	61 m

Since the cable length from A to the first distributor is only 4 m, only the 5 m drop line from B to the first distributor is is taken into consideration. This gives a cable length of 61 m.

3.6 Bus terminator

The trunk lines at each of the two furthest points in the DeviceNet must each have a terminating resistor. Terminators are not connected to drop lines.

The terminating resistors used with DeviceNet vary according to the supplier:

- Terminating resistor (resistance 121 Ω)
- Bus coupler with terminator

Fig. 3-7: DeviceNet terminator examples

- 1 DeviceNet cable
- 2 DeviceNet terminating resistor (robot controller)
- 3 Bus coupler
- 4 Terminator 121 Ω, +/- 1%
- 5 Terminator on bus coupler

Modules connected with hybrid Multibus cables do not require terminators. These modules automatically activate the terminator.

4 **DeviceNet connection**

Connection via MFC card 4.1

When connecting the DeviceNet via the MFC card, a maximum of 20 devices (MACID 1 to MACID 19) can be used, as the MFC DeviceNet driver increases the load on the main processor of the robot controller. The MFC card always has the MACID 0.

A DeviceNet connection always requires a 24 V DC supply voltage.

Example In the case of a connection via the MFC card, the DeviceNet cable goes from one device to the next. The devices may be arranged as desired.

Fig. 4-1: Connection example: robot controller - MFC DeviceNet

1 24 V DC power supply

DeviceNet cable

- 4 DeviceNet connector 5
- MFC-DeviceNet master con-2 nection
- 6 DeviceNet device

Terminator

4.2 **Connection via DeviceNet card**

3

In the DeviceNet structure, the DeviceNet card can be master, slave or both. A maximum of 64 devices (MACID 0 to MACID 63) can be connected, with the DeviceNet card also counting as a device.

Example In this connection example, the DeviceNet master connection is illustrated with a higher-level PLC. The robot controller is DeviceNet slave and Device-Net master.

Fig. 4-2: Connection example: robot controller - DeviceNet

1	PLC DeviceNet master connection
2	24 V DC power supply
3	Robot controller
4	DeviceNet device
Channel 1	Slave
Channel 2	Master

5 Configuration

5.1 Configuring a DeviceNet connection via the MFC card

The DeviceNet configuration files are in the directory C:\KRC\Roboter\INIT\.

Step	Description
1	Configure the file DEVNET.INI.
	(>>> 5.2 "Configuring the file DEVNET.INI" page 25)
2	Configure the file IOSYS.INI.
	(>>> 5.3 "Configuring the IOSYS.INI file" page 26)
3	Configure the baud rate via Telnet.
	(>>> 5.4 "Configuration via Telnet commands" page 27)
4	Configure the MACID via Telnet.
	(>>> 5.4.3 "Changing the MACID" page 28)

Description

Overview

Directory	Meaning
C:\KRC\Roboter\INIT\	Directory of the configuration files
C:\KRC\Roboter\LOG	Directory of the log files
C:\KRC\Roboter\DRIV ERS	Directory of the driver programs

File	Meaning
INIT\IOSYS.INI	Configuration file of the I/O system
INIT\DEVNET.INI	Configuration file of the DeviceNet driver
DRIVERS\DN2DRV.O	DeviceNet driver

5.2 Configuring the file DEVNET.INI

The file DEVNET.INI is the configuration file of the DeviceNet driver.

Precondition

- All communications cables have been installed.
- User group "Expert"
- Windows interface (CTRL+ESC)

Procedure

- 1. Open the file DEVNET.INI in the directory C:\KRC\ROBOTER\INIT.
- 2. Make settings.
- Select the menu sequence Configure > I/O Driver > Reconfigure I/O Driver.

The settings are saved.

The menu item **Reset** restarts the bus. Changes are not saved.

Description

[1110]
DEBUG=0
BAUDRATE=500
LOGFILE=1
[1]
Macid=3
[2]
Macid=7
[3]
Macid=45

[krc]

DEVNET.INI	Description
[KRC]	Shows Telnet display settings, transmission rate and log file generation
DEBUG	Advanced diagnostic information (optional)
	• 0 = off
	■ 1 = on
	 Default setting: 0
BAUDRATE	Transmission rate setting in kBaud
	 Permissible values: 125, 250, 500
	 Default setting: 500
LOGFILE	Optional entry for generating a log file
	 1 = log file is generated (name: DEVNET.LOG, directory: C:\KRC\Robot- er\Log)
	 Default setting: no entry
MACID	MACIDs must be specified in ascending order.
	 Permissible values: 063
	Default setting: 5
[1][63]	Scan list for entering the MACIDs. The numbers in square brackets must be specified consecu- tively in ascending order.

The MACID of the master does not need to be specified.

5.3 Configuring the IOSYS.INI file

The file IOSYS.INI is the configuration file of the I/O system.

Precondition

- All communications cables have been installed.
- User group "Expert"

Procedure

- 1. Select the menu sequence Configure > I/O Driver > Edit I/O Config.. The file IOSYS.INI is opened.
 - 2. In [DRIVERS]: activate DEVNET=2,dnlnit,dn2drv.o by deleting the comment separator.
 - 3. In [DEVNET]: assign inputs and outputs to the individual bus devices. (>>> 6.1 "Assigning digital inputs and outputs" page 35) (>>> 6.2 "Assigning analog inputs and outputs" page 36)
 - 4. Select the menu sequence Configure > I/O Driver > Reconfigure I/O Driver.

The settings are saved.

The menu item **Reset** restarts the bus. Changes are not saved.

Description

[CONFIG]
VERSION=2.00
[DRIVERS]
DEVNET=2, dnInit, dn2drv.o
•••
[DEVNET]
;E/A-Zuordungen Devicenet

IOSYS.INI	Description
[CONFIG]	Indication of the version number
[DRIVERS]	Lines for activation of the bus drivers
DEVNET=2,dnInit,dn2drv.o	DeviceNet driver
[DEVNET]	Lines for assignment of the inputs and outputs of the selected bus devices

5.4 Configuration via Telnet commands

Telnet commands can be used to modify the baud rate and MACIDs of the individual DeviceNet devices.

5.4.1 Opening Telnet

Procedure

- 1. Click on the Windows Start button.
- 2. Select the menu option Run....
- 3. In the **Open** box, enter.
 - Windows 95: Telnet 192.0.1.1
 - Windows XP Security Patch 2 or higher: Telnetk 192.0.1.1
- 4. Click on OK.

The Telnet window is opened.

In all Telnet entries: observe upper/lower case!

5.4.2 Changing the baud rate

The baud rate can be displayed using the Telnet command **dnSetBaudRate**.

Precondition	 DeviceNet driver is activated in IOSYS.INI
	 Driver is started (I/O reconfiguration)
Procedure	1. Open Telnet window.
	2. Enter dnSetBaudRate (MACID), (new baud rate).
	3. Press Enter.

Example

-> dnSetBaudRate 63,2_

Entry	Description
dnSetBaudRate	Baud rate change text
63	MACID
2	New baud rate 500 kBaud
	(0 = 125 kBaud, 1 = 250 kBaud, 2 = 500 kBaud)

5.4.3 Changing the MACID

The MACID can be changed using the Telnet command **dnSetMacId**.

- Precondition DeviceNet driver is activated in IOSYS.INI
 - Driver is started (I/O reconfiguration)

Procedure

- 1. Open Telnet window.
- 2. Enter dnSetMacId (old MACID), (new MACID).
- 3. Press Enter.

Example

Overview

-> dnSetMacId 63,12_

Entry	Description
dnSetMacId	MACID change text
63	Old MACID
12	New MACID

5.5 Configuring the DeviceNet card

The DeviceNet configuration files are in the directory C:\KRC\Roboter\INIT\.

Step	Description
1	Configure the file DNSC_XCO.INI.
	(>>> 5.7 "Configuring the file DNSC_xSL.INI" page 30)
2	Configure the file DNSC_XSL.INI.
	(>>> 5.6 "Configuring the file DNSC_xCO.INI" page 29)
3	Configure the file IOSYS.INI.
	(>>> 5.8 "Configuring the file IOSYS.INI" page 32)
4	Configure the baud rate via Telnet.
	(>>> 5.9 "Configuration via Telnet commands" page 33)
5	Configure the MACID via Telnet.
	(>>> 5.4.3 "Changing the MACID" page 28)

Description

Directory	Meaning
C:\KRC\Roboter\INIT\	Directory of the configuration files
C:\KRC\Roboter\LOG	Directory of the log files
C:\KRC\Roboter\DRIV ERS	Directory of the driver programs

File	Meaning
INIT\IOSYS.INI	Configuration file of the I/O system
INIT\DNSC_XCO.INI	Master configuration file of the corresponding DeviceNet channel (X=channel number: 1, 3, 5)
INIT\DNSC_XSL.INI	Configuration file of the corresponding Device- Net channel (X=channel number: 2, 4, 6)
	 For the connected bus modules
	 If channel X is used as a slave
DRIV- ERS\DNSCXDRV.O	Driver for the corresponding DeviceNet channel (X=channel number 1-6)
DRIVERS\DNSCB- DRV.O	Driver of the firmware file
DRIV- ERS\DNSCFDRV.O	Firmware file

5.6 Configuring the file DNSC_xCO.INI

 Description
 The file DNSC_xCO.INI is the master configuration file of the corresponding DeviceNet channel (x=channel number).

Precondition

- All communications cables have been installed.
- User group "Expert"
- Windows interface (CTRL+ESC)

Procedure

- 1. Open the file DNSC_xCO.INI in the directory C:\KRC\ROBOTER\INIT.
- 2. Make settings.
- Select the menu sequence Configure > I/O Driver > Reconfigure I/O Driver.

The settings are saved.

The menu item **Reset** restarts the bus. Changes are not saved.

Description

[CONFIG]	
MAC ID=1	
BAUDRATE=500	
LOGFILE=log/dnsc1.log	a
DEBUG=1	5
; USE ERROR DB=	; use default value
; SCANLIST COMMENT=	; use default value
; OPTIONS=	; use default value
[FAST OUT]	
; MAC ID=10	; not activated
_	

DNSC_xCO.INI	Description	
[CONFIG]	Channel configuration	
MAC_ID	MACID of the DeviceNet channel	
	Permissible values: 063	
BAUDRATE	Transmission rate (baud rate) setting in kBaud	
	Permissible values: 125, 250, 500	
	Default setting: 500	

DNSC_xCO.INI	Description
LOGFILE	Entry (name and path) after generation of a log file (optional)
	log/dnsc1.log for channel 1
	log/dnsc2.log for channel 2
DEBUG	Advanced diagnostic information (optional)
	• 0 = off
	■ 1 = on
	Default setting: 0
USE_ERROR_DB	Defines whether the language database of the robot is to be used (optional)
	 0 = do not use database
	1 = use database
	Default setting: 0
SCANLIST_COMMENT	Comments are generated in the scan list dur- ing configuration with RSNetworx (optional)
	• 0 = off
	■ 1 = on
	 Default setting: 0
OPTIONS	Customer-specific options that may only be entered if expressly instructed to do so by the KUKA Robot Group (optional)
	• 0 = off
	■ 1 = on
	Default setting: 0
[FAST_OUT]	Fastwrite MACID (fast outputs)
MAC_ID	Permissible values: 063
	 Deactivation is possible by specification of an invalid value or deletion of the entry
	Default setting: deactivated

5.7 Configuring the file DNSC_xSL.INI

Description

The file DNSC_xSL.INI is the configuration file of the corresponding Device-Net channel (x=channel number).

Precondition

- All communications cables have been installed.
- User group "Expert"
- Windows interface (CTRL+ESC)

Procedure

- 1. Open the file DNSC_xSL.INI in the directory C:\KRC\ROBOTER\INIT.
- 2. Make settings.
- Select the menu sequence Configure > I/O Driver > Reconfigure I/O Driver.

The settings are saved.

The menu item **Reset** restarts the bus. Changes are not saved.

Des	cri	nti	on
003	011	թս	

[MODULE_STARTUP]	
INACTIV=	; Example: 1,5,6
CONTINUE_WITH_WARNING=	; Example: 8,25
[SCANNERCFG]	
NET_EPR=75	
NET_ISD=2	
NET_BACKGROUND_POLL_RA	ATE=1
NET TX RETRY COUNT=1	
[1]	;Slave number
MAC_ID=1	;0-63
VENDOR_ID=418	;device keying info
PRODUCT_TYP=12	;device keying info
PRODUCT_CODE=14	;device keying info
POLL_RESPL=8	;number of inputbytes
POLL_CMDL=8	;number of outputbytes
[2]	

DNSC_xCO.INI	Description
[MODULE_STARTUP]	Start settings
INACTIV	Display, e.g. in the case of a tool change
	Permissible values: 063
	Default setting: deactivated
CONTINUE_WITH_WAR	The active program is not stopped, although one of the listed devices is faulty
	Permissible values: 063
	Default setting: deactivated
[SCANNERCFG]	Scanner configurations
NET_EPR	Expected packet rate (EPR)
	Permissible values: 1032000
	The value must be multiplied by 4 to ob- tain the time value in ms. Example 4x75=300 ms. If there is no communica- tion between the scanner and the Device- Net device in this time, this module is no longer addressed. The scanner addition- ally attempts to reinitialize the module.
	Default setting: 75
NET_ISD	Wait time in ms between 2 scan cycles
	Permissible values: 29000
	Default setting: 2
NET_BACKGROUND_P	Polling rate: foreground, background
OLL_RATE	0 = background
	1 = foreground
	Default setting: 1
NET_TX_RETRY_COUN	Counting pulse repetition
Т	Default setting: 1
[1][63]	The MACIDs are specified in ascending order in this scan list.
MACID	Module address
	Permissible values: 063

KUKA

DNSC_xCO.INI	Description
VENDOR_ID	ID number (specific to the module manufac- turer)
PRODUCT_TYPE	Manufacturer-specific value
PRODUCT_CODE	Manufacturer-specific value
POLL_RESPL	Number of module input bytes
POLL_CMDL	Number of module output bytes

5.8 Configuring the file IOSYS.INI

Description The file IOSYS.INI is the configuration file of the I/O system.

Precondition

- All communications cables have been installed.
- User group "Expert"

Procedure

- Select the menu sequence Configure > I/O Driver > Edit I/O Config.. The file IOSYS.INI is opened.
- 2. In [DRIVERS]:
 - Activate DNSC1=12,dnsc1lnit,dnsc1drv.o for DeviceNet card channel 1.
 - Activate DNSC2=13,dnsc2lnit,dnsc2drv.o for DeviceNet card channel 2.
- 3. In [DNSC1]: assign inputs and outputs (channel 1) of the individual bus devices.
- 4. In [DNSC2]: assign inputs and outputs (channel 2) of the individual bus devices.
- Select the menu sequence Configure > I/O Driver > Reconfigure I/O Driver.

The settings are saved.

The menu item **Reset** restarts the bus. Changes are not saved.

Description

```
[CONFIG]
VERSION=2.00
[DRIVERS]
...
DNSC1=12,dnsc1Init,dnsc1drv.o
DNSC2=13,dnsc2Init,dnsc2drv.o
...
[DNSC1]
;E/A-Zuordungen DeviceNet Kanal 1
[DNSC2]
;E/A-Zuordungen DeviceNet Kanal 2
```

IOSYS.INI	Description
[CONFIG]	Indication of the version number
[DRIVERS]	Lines for activation of the bus drivers
DNSC1=12,dnsc1Init,dns c1drv.o	DeviceNet driver channel 1

IOSYS.INI	Description
DNSC2=13,dnsc2Init,dns c2drv.o	DeviceNet driver channel 2
[DNSC1]	Lines for assignment of the inputs and out- puts of the selected bus devices, channel 1
[DNSC2]	Lines for assignment of the inputs and out- puts of the selected bus devices, channel 2

5.9 Configuration via Telnet commands

Telnet commands can be used to modify the baud rate for each channel of the DeviceNet card and the MACIDs of the individual DeviceNet devices.

5.9.1 Opening Telnet

Procedure

- 1. Click on the Windows Start button.
- 2. Select the menu option Run....
- 3. Enter the following in the **Open** box:
 - Windows 95: Telnet 192.0.1.1
 - Windows XP Security Patch 2 or higher: Telnetk 192.0.1.1
- 4. Click on OK.

The Telnet window is opened.

In all Telnet entries: observe upper/lower case!

5.9.2 Changing the baud rate

The baud rate can be displayed using the Telnet command **dnSetBaudRate**.

Precondition

- DeviceNet driver is activated in IOSYS.INI
- Driver is started (I/O reconfiguration)

Procedure

- 1. Open Telnet window.
- 2. Enter dnSetBaudRate (MACID),(new baud rate).
- 3. Press Enter.

Example

-> dnSetBaudRate 63,2_

Entry	Description			
dnSetBaudRate	Baud rate change text			
63	MACID			
2	New baud rate 500 kBaud			
	(0 = 125 kBaud, 1 = 250 kBaud, 2 = 500 kBaud)			

5.9.3 Changing the MACID

The MACID can be changed using the Telnet command **dnscxSetMacId** (x=channel number).

Procedure

1. Open Telnet window.

- 2. For channel 1: enter dnsc1SetMacId (old MACID), (new MACID).
- 3. Press Enter.
- 4. For channel 2: enter dnsc2SetMacId (old MACID), (new MACID).
- 5. Press Enter.

Example

-> dnsclSetMacId 4,14_

Entry	Description		
dnsc1SetMacId	MACID change text (channel 1)		
4	Old MACID		
14	New MACID		

6 I/O assignment

6.1 Assigning digital inputs and outputs

Procedure

- 1. Open the file **IOSYS.INI**.
- 2. Assign inputs and outputs in [DEVNET].

Fig. 6-1: Overview: assignment of digital I/Os

Description

I/O position specifications in robot controller				
IN	Robot controller input			
OUT	Robot controller output			
В	Byte = 8 bits (signals)			
W	Word = 2 bytes = 16 bits (signals)			
DW	Double word = 2 words = 4 bytes = 32 bits (signals)			
Byte offset	The byte offset values (0 to 127) are counted once for the digital inputs and once for the digital outputs. Multiple assignment is not possible for any memory position in the I/ O system.			

MFC card input memory				
MACID	The DeviceNet address (1 to 63) is set on each module.			
Byte offset	The byte offset designates the position of the I/Os in the memory of the DeviceNet device and is counted once for all inputs and once for all outputs (0 to 127).			
Multiplier	The multiplier is used to define the address range width of the connected devices (multiplier value 1, 2, 3,) to allow a possible subsequent address expansion.			

Example

Device 1: I/O module with MACID 3:

16 digital inputs, 16 digital inputs, 16 digital outputs

The first inputs of device 1 should have a data width of 2 bytes (1 word) and be assigned to input address 0 of the robot controller. The MACID of device 1 is 3. Address range 0 is defined and the range width remains unchanged (x1):

INW0=3,0,x1

The next inputs should have a data width of 8 bits (1 byte) and be assigned to input address 2 of the robot controller. The MACID of device 1 is 3. Address range 2 is defined and the range width is doubled (x2):

INB2=3,2,x2

The outputs should have a data width of 2 bytes (1 word) and be assigned to output address 0 of the robot controller. The MACID of device 1 is 3. Address range 0 is defined and the range width remains unchanged (x1):

OUTW0=3,0,x1

Entry for device 1 in IOSYS.INI:

[DEVNET]							
; Devicenet N	MACID 3						
INW0=3,0,x1	; \$IN[1-16]						
INB2=3,2,x2	; \$IN[17-32]						
OUTW0=3,0,x1	; \$OUT[1-16]						

Further examples under (>>> 7.3 "Assigning digital inputs/outputs" page 43).

6.2 Assigning analog inputs and outputs

Procedure

- 1. Open the file **IOSYS.INI**.
- 2. Assign inputs and outputs in [DEVNET].

Fig. 6-2: Overview: assignment of analog I/Os

Description

Robot contro	oller		
ANIN	Robot controller input		
ANOUT	Robot controller output		
Index	1 to 16 for inputs		
	1 to 32 for outputs		

Multiple assignment is not possible for any memory position in the I/O system.

DeviceNet	
DeviceNet address	The DeviceNet address (1 to 63) is set on each DeviceNet module.
Byte offset	The byte offset designates the position of the I/Os in the memory of the DeviceNet device and is counted once for all inputs and once for all outputs (0 to 127).
Exponent 2	This parameter specifies the number of bits used to repre- sent the numeric value of an analog value (8 to 16).

DeviceNet						
Туре	This parameter specifies how the bits in the parameter Ex- ponent 2 are arranged and whether or not the leading bit should be interpreted as a plus/minus sign before the nu- meric value.					
	The possible parameter values have the following mean- ings:					
	 0: right-justified without sign 					
	1: right-justified with sign					
	 2: left-justified without sign 					
	 3: left-justified with sign 					
Cal factor	The Cal factor specifies the value at which an analog output generates its nominal value (e.g. 10 V). For an analog input, the value of the Cal factor corresponds to the nominal input value.					

The Cal factor is a value defined by the manufacturer for identifying the module. There is no need to enter it in the scan list.

Example

- Device 2: I/O module with MACID 4:
 - 2 analog inputs, 2 analog outputs

Input 1 of device 2 is to be assigned to input address 1 of the robot controller. The MACID of device 2 is 4. The defined address range (position of the I/Os in the memory of the DeviceNet device) is 1 and the defined representation width of the individual bits is 16. Alignment 3 (left-justified with sign) is specified and the value defined by the manufacturer (Cal factor) is entered:

ANIN1=4,1,16,3,CAL32768

Input 2 of device 2 is to be assigned to input address 2 of the robot controller. Address range 3 is defined. MACID, representation width, alignment and Cal factor remain unchanged:

ANIN2=4,3,16,3,CAL32768

Output 1 of device 2 is to be assigned to output address 1 of the robot controller. Address range 0 is defined. MACID, representation width, alignment and Cal factor remain unchanged:

ANOUT1=4,0,16,3,CAL32768

Output 2 of device 2 is to be assigned to output address 2 of the robot controller. Address range 2 is defined. MACID, representation width, alignment and Cal factor remain unchanged:

ANOUT2=4,2,16,3,CAL32768

Entry for device 2 in IOSYS.INI:

```
[DEVNET]
; Devicenet MACID 4
ANIN1=4,1,16,3,CAL32768 ; $ANIN[1]
ANIN2=4,3,16,3,CAL32768 ; $ANIN[2]
ANOUT1=4,0,16,3,CAL32768 ; $ANOUT[1]
ANOUT2=4,2,16,3,CAL32768 ; $ANOUT[2]
```


Further examples under (>>> 7.4 "Assigning analog inputs/outputs" page 43).

6.3 Offset-Table

The offset byte and the related input and output addreses are specified in this table.

Formula for start address: Offset x 8 + 1

Byte	Address from	Address to	Byte	Address from	Address to
0	1	8	64	513	520
1	9	16	65	521	528
2	17	24	66	529	536
3	25	32	67	537	544
4	33	40	68	545	552
5	41	48	69	553	560
6	49	56	70	561	568
7	57	64	71	569	576
8	65	72	72	577	584
9	73	80	73	585	592
10	81	88	74	593	600
11	89	96	75	601	608
12	97	104	76	609	616
13	105	112	77	617	624
14	113	120	78	625	632
15	121	128	79	633	640
16	129	136	80	641	648
17	137	144	81	649	656
18	145	152	82	657	664
19	153	160	83	665	672
20	161	168	84	673	680
21	169	176	85	681	688
22	177	184	86	689	696
23	185	192	87	697	704
24	193	200	88	705	712
25	201	208	89	713	720
26	209	216	90	721	728
27	217	224	91	729	736
28	225	232	92	737	744
29	233	240	93	745	752
30	241	248	94	753	760
31	249	256	95	761	768
32	257	264	96	769	776
33	265	272	97	777	784
34	273	280	98	785	792
35	281	288	99	793	800

Byte	Address from	Address to	Byte	Address from	Address to
36	289	296	100	801	808
37	297	304	101	809	816
38	305	312	102	817	824
39	313	320	103	825	832
40	321	328	104	833	840
41	329	336	105	841	848
42	337	344	106	849	856
43	345	352	107	857	864
44	353	360	108	865	872
45	361	368	109	873	880
46	369	376	110	881	888
47	377	384	111	889	896
48	385	392	112	897	904
49	393	400	113	905	912
50	401	408	114	913	920
51	409	416	115	921	928
52	417	424	116	929	936
53	425	432	117	937	944
54	433	440	118	945	952
55	441	448	119	953	960
56	449	456	120	961	968
57	457	464	121	969	976
58	465	472	122	977	984
59	473	480	123	985	992
60	481	488	124	993	1000
61	489	496	125	1001	1008
62	497	504	126	1009	1016
63	505	512	127	1017	1024

7 Example

7.1 DeviceNet connection via the MFC card

Fig. 7-1: Connection example

DEVNET.INI

[krc]	
lebug=0	
baudrate=500	
LOGFILE=1	
[1]	
Macid=3	
[2]	
Macid=5	
[3]	
Macid=25	
[4]	
Macid=61	

The entries in the scan list are always made in ascending order, while the DeviceNet devices can be connected in any order.

The MACID of the master does not need to be specified.

7.2 DeviceNet connection via the DeviceNet card

Channel 1 of the DeviceNet card is simultaneously the slave of the PLC and the master of 2 I/O modules.

Bus structure with:

- Master module
- Robot controller with MACID 1: 32 inputs, 32 outputs
- I/O module with MACID 7: 16 inputs, 16 outputs
- I/O module with MACID 5: 8 inputs, 8 outputs

Fig. 7-2: Example: channel 1 as master and slave

- 1 PLC (master)
- 2 Robot controller (slave, master)
- 3 Flex I/O (slave)
- 4 Block I/O (slave)

DNSC_1SL.INI

[MODULE STARTUP] INACTIV=; CONTINUE WITH WARNING=; [SCANNERCFG] NET EPR=75 NET_ISD=2 NET_BACKGROUND_POLL_RATE=1 NET_TX_RETRY_COUNT=1 [1] MAC_ID=1 VENDOR ID=418 PRODUCT TYP=12 PRODUCT CODE=14 POLL_RESPL=4 POLL_CMDL=4 [2] MAC ID=5 VENDOR ID=1 PRODUCT_TYP=7 PRODUCT_CODE=1102 POLL_RESPL=4 POLL CMDL=2 [3] MAC ID=7 VENDOR ID=1 PRODUCT_TYP=12 PRODUCT_CODE=1

POLL_RESPL=1 POLL_CMDL=1

DNSC_1CO.INI

[CONFIG]	
MAC_ID=1	
BAUDRATE=500	
DEBUG=1	
[FAST_OUT]	

```
[DNSC1]
;FLexI/O
INB0=7,0,x2;Statuswort
INB2=7,2,x2;$IN[17..32]
OUTB0=7,0,x2;$OUT[1..16]
;CompactblockI/O
INB4=5,0,x1 ;$IN[32..40]
OUTB2=5,0,x1 ;$OUT[17..24]
;from/to PLC
INB10=1,0,x4 ;$IN[41..72]
OUTB10=1,0,x4 ;$OUT[25..56]
```

7.3 Assigning digital inputs/outputs

Bus structure via MFC with:

- MFC as master
- Device 1: I/O module with MACID 3:
 16 digital inputs, 16 digital inputs, 16 digital outputs
- Device 2: I/O module with MACID 4:
 8 digital inputs, 8 digital outputs, 8 digital outputs
- Device 3: I/O module with MACID 5: 16 digital inputs, 8 digital outputs

I/O sorting may be manufacturer-specific.

7.4 Assigning analog inputs/outputs

Bus structure via MFC with:

- Master module
- I/O module with MACID 3: 16 digital inputs, 16 digital inputs, 16 digital outputs
- I/O module with MACID 4: 8 digital inputs, 2 analog inputs, 2 analog outputs
- I/O module with MACID 5: 2 analog outputs, 2 analog outputs

KUK

ſ			Ma	aster	[DEVNET] ; Devicenet MACID 3 INW0=3,0,x1	;\$IN[1-1-6]
$\left \right $	MACID 3	16 IN -D	16 IN -D	16 OUT -D	INB2=3,2,x2 OUTW0=3,0,x1 ; Devicenet MACID 4	;\$IN[17-32] ;\$OUT[1-16]
		0-1	2-3	0-1	INB4=4,0,x1 ANIN1=4,1,16,3,CAL32768	;\$IN[33-40] ;ANIN[1]
$\left \right $	MACID 4	8 IN -D	2 IN -A	2 OUT -A	ANIN2=4,3,16,3,CAL32768 ANOUT1=4,0,16,3,CAL32768	; ANIN[2] ; ANOUT[1]
l		0	1-2 3-4	0-1 2-3	; Devicenet MACID 5	, ANOUI [2]
L	MACID 5	OUT -A	OUT -A		OUTB2=5,1,x1 ANOUT3=5,2,16,3,CAL32768	;\$OUT[25-32] ;\$NOUT[3]
		0-1	2-3 4-5		ANOUT4=5,4,16,3,CAL32768	; ANOUT [4]

I/O sorting may be manufacturer-specific.

7.5 Generating a log file, MFC configuration

Procedure

- 1. Open the robot controller directory C:\Program Files\KRC\ or C:\KRC\Roboter\.
- 2. Call DEVNET.INI.
- 3. Generate log file by means of entry LOGFILE=1.

```
[krc]
debug=1
baudrate=500
LOGFILE=1
```

- 4. Save changes.
- 5. Open log file via: C:\KRC\ROBOTER\LOG\DEVNET.LOG:

```
FILE_PTR_POS=000830
DN2Drv : Log Date 7.10.4 : 11:40
07/10/04 11:40:38 : Gen2 debugging enabled
07/10/04 11:40:39 : DN2DRV Version : 1.22.4.0
07/10/04 11:40:39 : baudrate 500 KBaud
07/10/04 11:40:39 : scan gap default is 6
07/10/04 11:40:40 : default priority is 173
07/10/04 11:40:40 : Power Off clear device data disabled
07/10/04 11:40:41 : scans 3 devices
07/10/04 11:40:41 : CAN1 base is 0d2000
07/10/04 11:40:47 : Driver is ready
==== LAST_ENTRY =====
```

Highlighted:

- 3 devices detected
- DeviceNet driver OK

No errors in the DeviceNet system.

8 Diagnosis

8.1 Error display

KUKA.HMI

File	Edit	Configure	e Monitor	Setup	Command	ls Technol	ogy H	elp	
Filter: D	etail		Contents o	f: KUKA-SFE1W	KO3VI (KRC:\)			
🛛 🛵 🖌 KUK	A-SFE1WK03VI	(KRC:\)	Name	Ext	Comment	Attribu	utes S	100%	
👯 🗀	R1		🚞 R1					100	
	STEU		🚞 STEU			h			
(A:	Ð								
🖕 字 (C:	υ								
🔨 🗠 (D:	D								
🐴 🙆 (E:	υ								
	RCHIVE:\)								
								7	
			•				<u> </u>		
1 Objec	t(s) selected			0 Bytes					
C Ti	me no.	Source N	dessage .					—	
1 2:	54:0 8016	E	Error during scan device 7				7		
0 2:	54:0 1033	E	Error on reading, driver: DN2DRV						
STOP 2:	54:0 2858	, F	Ackn. Stop for error fi	ieldbus				×	_ (1
Num	Cap S I	R		T1	POV 10	0% RName	3:12 PM	~	
Opline	e help					Ackn.	Ackn. All		

Fig. 8-1: Error display (1) Field bus error

Possible source of errors:

- Device error
- Error on reading or writing
- Driver error

Log file (MFC) C:\KRC\ROBOTER\LOG\DEVNET.LOG

FILE_PTR_POS=001073
DN2Drv : Log Date 7.10.4 : 11:48
07/10/04 11:48:49 : Gen2 debugging enabled
07/10/04 11:48:49 : DN2DRV Version : 1.22.4.0
07/10/04 11:48:50 : baudrate 500 KBaud
07/10/04 11:48:50 : scan gap default is 6
07/10/04 11:48:51 : default priority is 173
07/10/04 11:48:51 : Power Off clear device data disabled
07/10/04 11:48:51 : scans 3 devices
07/10/04 11:48:52 : CAN1 base is 0d2000
07/10/04 11:49:05 : ERROR CreateInstance failed !
07/10/04 11:49:06 : ERROR create instance failed
07/10/04 11:49:06 : ERROR [07] invalid IN-data
07/10/04 11:49:07 : ERROR [07] invalid OUT-data
===== LAST ENTRY =====

Highlighted: write and read errors in device 7.

Log file (DeviceNet) Error message in channel 1 C:\KRC\ROBOTER\LOG\DNSC1.LOG

FILE_PTR_POS=001397
LPDN_Scanner : Log Date 07/09/05 : 15:20:38
07/09/05 : 15:20:38, DNch(1): >-----> Start LPDN-Scanner driver
(channel 1)
:
07/09/05 : 15:20:38, DNch(1): LPDN MAC_ID : 1
07/09/05 : 15:36:43, DNch(1): Baudrate : 500 KBaud
:
07/09/05 : 15:36:46, DNch(1) : MAC_ID 03 projected
07/09/05 : 15:36:46, DNch(1) : MAC_ID 04 projected
07/09/05 : 15:36:46, DNch(1) : LPDN-Scanner state: running (channel 1)
07/09/05 : 15:36:56, DNch(1) : Device[4]:Slave stopped communication
07/09/05 : 15:37:00, DNch(1) : Device[4]: Device not responding
===== LAST ENTRY =====

Highlighted: write and read errors in device 4.

Error message in channel 1 cleared

```
FILE PTR POS=001397
LPDN Scanner : Log Date 07/09/05 : 15:20:38
07/09/05 : 15:20:38, DNch(1): >----> Start LPDN-Scanner driver
(channel 1)
07/09/05 : 15:20:38, DNch(1): LPDN MAC ID
                                              : 1
07/09/05 : 15:36:43, DNch(1): Baudrate
                                              : 500 KBaud
07/09/05 : 15:36:46, DNch(1): MAC ID 03 projected
07/09/05 : 15:36:46, DNch(1): MAC ID 04 projected
07/09/05:15:36:46, DNch(1):LPDN-Scanner state: running (channel 1)
07/09/05:15:36:56, DNch(1): Device[4]:Slave stopped communication
07/09/05 : 15:37:00, DNch(1): Device[4]: Device not responding
07/09/05 : 15:59:05, DNch(1): Device[4]: Error cleared: ('Slave
stopped communication')
===== LAST ENTRY =====
```

Highlighted: device 4 active again.

The status of the card or network is indicated by means of bicolor LEDs (red/ green). LEDs 1 and 2 are assigned to channel 1, LEDs 3 and 4 to channel 2.

I/O status (LEDs 1 and 3)

LED	Description
Off	In the "Reset" state or if no firmware is loaded on the card.
Off	All inputs and outputs are inactive.
Green	All configured inputs and outputs are active and error- free.
Flashing green	 No inputs/outputs configured or active.
	 Inputs/outputs have errors.
Flashing red	One or more inputs/outputs cannot be read/written.
	Cause: incorrect configuration or faulty external device.
Red	Critical bus error

Module/network status (LEDs 2 and 4)

LED indicators

LED	Description		
Red	The module is in the "Reset" state.		
Off	Module		
	is not online		
	 has not completed the Duplicate MacID test 		
	has no mains voltage on the DeviceNet		
Flashing green	The module is operating normally and is online, but no connections have been established to other devices.		
	Cause: configuration is missing, incomplete or incor- rect.		
Flashing red	Recoverable error and/or one or more I/O connections are in "timeout" state.		
Red	The module has an unrecoverable error:		
	 there is another device with the same MacID on the bus 		
	the bus is in the "Bus Off" state		
	Open-circuit/short-circuit or incorrect baud rate set- ting on at least one device.		
Flashing red and green	The module has detected a network access error and is in the "Communication error" state. The module has then received and accepted the communication error query message.		

DeviceNet DIO1620,The status of the card or network is indicated by means of bicolor LEDs (red/
green).LED indicatorsgreen).

Module status

LED	Description
Off	The module has no mains voltage on the DeviceNet
Green	All configured inputs and outputs are active and error- free.
Flashing green	 No inputs/outputs configured or active.
	 Inputs/outputs have errors.
Flashing red	Recoverable error, check supply voltage of the I/Os on the OMNI connector.
Red	Critical bus error

Network status

LED	Description	
Off	The module has no mains voltage on the DeviceNet	
Green	Module functioning normally 	
	 is online 	
	 has one or more connections to other devices 	
Flashing green	The module is operating normally and is online, but no connections have been established to other devices.	
Flashing red	Recoverable error and/or one or more I/O connections are in "timeout" state.	

LED	Description
Red	The module has an unrecoverable error:
	 there is another device with the same MacID on the bus
	the bus is in the "Bus Off" state
	Open-circuit/short-circuit or incorrect baud rate set- ting on at least one device.
Flashing red and green	The module is in the "Self-test" state.

8.2 Checking the hardware

In the event of malfunctions, check the following points first:

- Power supply present
- DIP switches set correctly
- A 121 Ω resistor must be connected to each end of the DeviceNet Exception: modules with hybrid Multibus cables
- Cable shield must be grounded once
- Negative supply voltage must be grounded
- Check the power consumption of the devices connected
- Check all the wires in the DeviceNet cable for continuity
- The resistance between the CAN high (white) and CAN low (blue) wires must be approx. 60 Ω
- If the cable is not connected, the resistance between the wires and the shield must be greater than 1 MΩ.

8.3 Telnet diagnosis, MFC card

Telnet commands can be used to define the overall status of the DeviceNet circuit and the module status of the individual DeviceNet devices.

-			
7 1	\mathbf{v}	P \ / I	
	VE		
•			

Step	Description
1	Open Telnet
	(>>> 5.9.1 "Opening Telnet" page 33)
2	Poll devices
	(>>> 8.3.2 "Polling devices" page 49)
3	Read I/O device data
	(>>> 8.3.3 "Reading I/O data" page 49)

8.3.1 Opening Telnet

Procedure

- 1. Click on the Windows **Start** button.
- 2. Select the menu option Run....
- 3. Enter the following in the **Open** box:
 - Windows 95: Telnet 192.0.1.1
 - Windows XP Security Patch 2 or higher: Telnetk 192.0.1.1
- 4. Click on **OK**.

The Telnet window is opened.

In all Telnet entries: observe upper/lower case!

8.3.2 Polling devices

The Telnet command **dnWho** can be used to monitor which devices are connected to the DeviceNet.

Precondition

Driver is started (I/O reconfiguration)

DeviceNet driver is activated in IOSYS.INI

Procedure

- 1. Open Telnet window.
- 2. Enter **dnWho**.
- 3. Press Enter.

Example

-> dn	√ho	
DNDRV	DNDRV	starting WHO
DNDRV	DNDRV	using baudrate 500 KBaud
DNDRV	[00]	is in scanlist
DNDRV	[03]	is in scanlist
DNDRV	[04]	is in scanlist
DNDRV	[07]	is in scanlist
DNDRV	[08]	is in scanlist
DNDRV	search	ning devices
DNDRV	[03]	Group-2
DNDRV	[04]	UCMM
DNDRV	[07]	Group-2
DNDRV	ready	
value	= 0 =	0x0

5 devices are detected in the scan list (DEVNET.INI) plus 3 external devices. Device [00] is always the master (MFC card).

8.3.3 Reading I/O data

The I/O data of the DeviceNet devices can be read using the Telnet command **dnShow 1**.

Precondition

- DeviceNet driver is activated in IOSYS.INI
- I/O module is listed in the scan list in DEVNET.INI

Driver must be started (I/O reconfiguration)

Procedure

- 1. Open Telnet window.
- 2. Enter dnShow 1.
- 3. Press Enter.


```
-> dnShow 1
DN2DRV Version : 1.22.4.0
Scanner enable : running
Scanner State : OK
CAN Errors : 0
CAN OverFlow : 0
CAN OVELL
SystemTime : 832400
: 500 KBaud
[00] KRC State 00 Master none
      Vendor0000ProdType0000ProdCode0000Revision0000Produce0000Consume0000
      SerNum 00000000 ProdName KUKA DN2-Driver
      I:
       0:
[03] Warn 0 State 30:30 running online
Vendor 0001 ProdType 0007 ProdCode 0137
Revision 0301 Produce 0003 Consume 0003
       SerNum 0008ad09 ProdName 16 IN / 20 OUT, 24VDC
       I: 00 00 03
       0: 00 00 00
[04] Warn 0 State 30:30 running online
      Vendor0001ProdType0012ProdCode0001Revision0102Produce0006Consume0004
       SerNum 00124dcf ProdName 1794-ADN Flex I/O
       I: fc 00 00 00 00 00
      0: 00 00 00 0
[07] Warn 0 State 30:30 running online
      Vendor 0108 ProdType 0012 ProdCode 5220
Revision 0401 Produce 0002 Consume 0005
       SerNum 000a7d6b ProdName BK5220 V01.04
      I: 00 00 03
      0: 00 00 00
value = 1 = 0x1
->
```

Description
MAC ID
Manufacturer
Module-specific data
Module-specific data
Device name, device type
Number of input bytes
Number of output bytes

8.4 Telnet diagnosis

Telnet commands can be used to define the overall status of the DeviceNet circuit and the module status of the individual DeviceNet devices.

Overview

Step	Description
1	Open Telnet.
	(>>> 5.9.1 "Opening Telnet" page 33)
2	Poll device status.
	(>>> 8.4.2 "Polling the device status" page 51)
3	Poll DeviceNet status.
	(>>> 8.4.3 "Polling the DeviceNet status" page 51)
4	Read I/O device data.
	(>>> 8.4.4 "Reading I/O data" page 52)

8.4.1 Opening Telnet

Procedure

- 1. Click on the Windows Start button.
- 2. Select the menu option Run....
- 3. Enter the following in the **Open** box:
 - Windows 95: **Telnet 192.0.1.1**
 - Windows XP Security Patch 2 or higher: Telnetk 192.0.1.1
- 4. Click on OK.

The Telnet window is opened.

In all Telnet entries: observe upper/lower case!

8.4.2 Polling the device status

The module status of a DeviceNet device can be polled using the Telnet command **dnscxGetNodeInfo (MacID)** (x=channel number).

Precondition

- DeviceNet driver is activated in IOSYS.INI
- Driver is started (I/O reconfiguration)

Procedure

- 1. Open Telnet window.
- 2. For channel 1: enter dnsc1GetNodeInfo (MacID).
- 3. Press Enter.
- 4. For channel 2: enter dnsc2GetNodeInfo (MacID).
- 5. Press Enter.

Example Device [03] from the example **DeviceNet status** is called via MACID (3).

-> dnsclGetNodeInfo 3			
[3]	VendorII	D: 0001	ProdType: 0007 ProdCode: 0137
	Revision	n: 00.00	SerNum: <not available=""></not>
	/	Produce	Consume
	Poll:	0003	0003
	Strobe:	0000	0008
	COS:	0000	0000
	Cyclic:	0000	0000
	Name: <not available=""></not>		
value =	$23 = 0x^{2}$	17	
->			

Entry	Description
Poll	Number of bytes polled or written in poll mode
Produce	Inputs
Consume	Outputs

If there is no EDS file present, the module parameters required for configuration can be read here.

8.4.3 Polling the DeviceNet status

The DeviceNet status of a channel can be polled using the Telnet command **dnscxShow** (x=channel number).

Precondition

DeviceNet driver is activated in IOSYS.INI

Driver is started (I/O reconfiguration)

1. Open Telnet window.

- 2. For channel 1: enter dnsc1Show.
- 3. Press Enter.
- 4. For channel 2: enter dnsc2Show.
- 5. Press Enter.

Example

Procedure

Channel 1 status called.

-> dnsc1Show		
SW-ver. drv/fw/PLX	:	2.01/2.52/2
HW-ver. serial/board	:	1292/0
MAC ID	:	1
Baudrate	:	500 KBaud
DeviceState Ch 1	:	Online
Nodes Active	:	3 4
Nodes Idle	:	
Nodes Fault	:	
Nodes State	:	[03]=00 [04]=00
ScanFlags <0x0c>	:	'Interscan delay' + 'Send Strobe'
value = $1 = 0 \times 1$		
->		

Entry	Description
Nodes Ac- tive	Active modules, channel 1
Nodes State	Status of the active modules (value in hex)

8.4.4 Reading I/O data

The I/O data of a DeviceNet device can be read using the Telnet command **dnscxShowDevice** (x=channel number).

DeviceNet driver is activated in IOSYS.INI

Driver is started (I/O reconfiguration)

Procedure

Precondition

- 1. Open Telnet window.
- 2. For channel 1: enter dnsc1ShowDevice (MacID).
- 3. Press Enter.
- 4. For channel 2: enter dnsc2ShowDevice (MacID).
- 5. Press Enter.

Example

Call device with MACID 3 on channel 1.

```
-> dnsc1ShowDevice 3
[03] Poll I: 00 00 03
0: 00 00 00
value = 2 = 0x2
->
```

Entry	Description
I: 00 00 03	Input: 3 bytes, bit 0 and bit 1 = TRUE
O: 00 00 00	No outputs set

8.4.5 Status code

Code	Description
00	No error in module
46	Duplicate MACID test results received: MACID for this equipment is already assigned!
47	Incorrect entries in the scan list (files dnsc_1SI.ini and/or dnsc_2SI.ini)
48	Device stopped communication
49	Device does not correspond to configuration in the scan list
4a	DeviceNet port (interface at the bus) has detected data overflow
4b	Network communication failed
4c	Timeout due to missing communication
4d	Datawidth of the device does not match configuration
4e	Device not responding, bus interrupted, voltage supply missing or equipment defective
4f	Transmission error (DeviceNet card)
50	DeviceNet card is in idle mode
51	DeviceNet card is in the error state
52	I/O fragmentation incorrect (possible interference on the bus)
53	Device does not accept parameterization data from the master (incorrect configuration in the master)
54	Device not yet initialized
55	Too many data for fragmentation memory (possible inter- ference on the bus)
56	Device is in idle mode
57	Assigned master cannot communicate with the device (bus interrupted, incorrectly configured to master, no supply voltage at the master, etc.)
58	Assigned master is not able to perform the parameteriza- tion
59	Configuration failed
5a	User has deactivated DeviceNet card
5b	"Bus Off" state detected (possible reflection/interference on the bus)
5c	No bus power supply at the device
60	DeviceNet card is in test mode
61	User has stopped DeviceNet card
62	Firmware error (incorrect firmware)
6f	Error occurred repeatedly (message appears along with another message)

9 KUKA Service

9.1 Requesting support

Introduction

The KUKA Robot Group documentation offers information on operation and provides assistance with troubleshooting. For further assistance, please contact your local KUKA subsidiary.

Faults leading to production downtime are to be reported to the local KUKA subsidiary within one hour of their occurrence.

Information

- The following information is required for processing a support request:
- Model and serial number of the robot
- Model and serial number of the controller
- Model and serial number of the linear unit (if applicable)
- Version of the KUKA System Software
- Optional software or modifications
- Archive of the software
- Application used
- Any external axes used
- Description of the problem, duration and frequency of the fault

9.2 KUKA Customer Support

AvailabilityKUKA Customer Support is available in many countries. Please do not hesi-
tate to contact us if you have any questions.ArgentinaRuben Costantini S.A. (Agency)
Luis Angel Huergo 13 20
Parque Industrial
2400 San Francisco (CBA)
Argentina
Tel. +54 3564 421033

Fax +54 3564 428877 ventas@costantini-sa.com

AustraliaMarand Precision Engineering Pty. Ltd. (Agency)153 Keys RoadMoorabbinVictoria 31 89AustraliaTel. +61 3 8552-0600Fax +61 3 8552-0605robotics@marand.com.au

Austria	KUKA Roboter GmbH Vertriebsbüro Österreich Regensburger Strasse 9/1 4020 Linz Austria Tel. +43 732 784752 Fax +43 732 793880 office@kuka-roboter.at www.kuka-roboter.at
Belgium	KUKA Automatisering + Robots N.V. Centrum Zuid 1031 3530 Houthalen Belgium Tel. +32 11 516160 Fax +32 11 526794 info@kuka.be www.kuka.be
Brazil	KUKA Roboter do Brasil Ltda. Avenida Franz Liszt, 80 Parque Novo Mundo Jd. Guançã CEP 02151 900 São Paulo SP Brazil Tel. +55 11 69844900 Fax +55 11 62017883 info@kuka-roboter.com.br
Chile	Robotec S.A. (Agency) Santiago de Chile Chile Tel. +56 2 331-5951 Fax +56 2 331-5952 robotec@robotec.cl www.robotec.cl
China	KUKA Flexible Manufacturing Equipment (Shanghai) Co., Ltd. Shanghai Qingpu Industrial Zone No. 502 Tianying Rd. 201712 Shanghai P.R. China Tel. +86 21 5922-8652 Fax +86 21 5922-8538 Franz.Poeckl@kuka-sha.com.cn www.kuka.cn

France	KUKA Automatisme + Robotique SAS Techvallée 6 Avenue du Parc 91140 Villebon s/Yvette France Tel. +33 1 6931-6600 Fax +33 1 6931-6601 commercial@kuka.fr www.kuka.fr
Germany	KUKA Roboter GmbH Blücherstr. 144 86165 Augsburg Germany Tel. +49 821 797-4000 Fax +49 821 797-1616 info@kuka-roboter.de www.kuka-roboter.de
Hungary	KUKA Robotics Hungaria Kft. Fö út 140 2335 Taksony Hungary Tel. +36 24 501609 Fax +36 24 477031 info@kuka-robotics.hu
India	KUKA Robotics, Private Limited 621 Galleria Towers DLF Phase IV 122 002 Gurgaon Haryana India Tel. +91 124 4148574 info@kuka.in www.kuka.in
Italy	KUKA Roboter Italia S.p.A. Via Pavia 9/a - int.6 10098 Rivoli (TO) Italy Tel. +39 011 959-5013 Fax +39 011 959-5141 kuka@kuka.it www.kuka.it

Korea	KUKA Robot Automation Korea Co. Ltd. 4 Ba 806 Sihwa Ind. Complex Sung-Gok Dong, Ansan City Kyunggi Do 425-110 Korea Tel. +82 31 496-9937 or -9938 Fax +82 31 496-9939 info@kukakorea.com
Malaysia	KUKA Robot Automation Sdn Bhd South East Asia Regional Office No. 24, Jalan TPP 1/10 Taman Industri Puchong 47100 Puchong Selangor Malaysia Tel. +60 3 8061-0613 or -0614 Fax +60 3 8061-7386 info@kuka.com.my
Mexico	KUKA de Mexico S. de R.L. de C.V. Rio San Joaquin #339, Local 5 Colonia Pensil Sur C.P. 11490 Mexico D.F. Mexico Tel. +52 55 5203-8407 Fax +52 55 5203-8148 info@kuka.com.mx
Norway	KUKA Sveiseanlegg + Roboter Bryggeveien 9 2821 Gjövik Norway Tel. +47 61 133422 Fax +47 61 186200 geir.ulsrud@kuka.no
Portugal	KUKA Sistemas de Automatización S.A. Rua do Alto da Guerra n° 50 Armazém 04 2910 011 Setúbal Portugal Tel. +351 265 729780 Fax +351 265 729782 kuka@mail.telepac.pt

Russia	KUKA-VAZ Engineering Jushnoje Chaussee, 36 VAZ, PTO 445633 Togliatti Russia Tel. +7 8482 391249 or 370564 Fax +7 8482 736730 Y.Klychkov@VAZ.RU
South Africa	Jendamark Automation LTD (Agency) 76a York Road North End 6000 Port Elizabeth South Africa Tel. +27 41 391 4700 Fax +27 41 373 3869 www.jendamark.co.za
Spain	KUKA Sistemas de Automatización S.A. Pol. Industrial Torrent de la Pastera Carrer del Bages s/n 08800 Vilanova i la Geltrú (Barcelona) Spain Tel. +34 93 814-2353 Fax +34 93 814-2950 Comercial@kuka-e.com www.kuka-e.com
Sweden	KUKA Svetsanläggningar + Robotar AB A. Odhners gata 15 421 30 Västra Frölunda Sweden Tel. +46 31 7266-200 Fax +46 31 7266-201 info@kuka.se
Switzerland	KUKA Roboter Schweiz AG Riedstr. 7 8953 Dietikon Switzerland Tel. +41 44 74490-90 Fax +41 44 74490-91 info@kuka-roboter.ch www.kuka-roboter.ch

Taiwan	KUKA Robot Automation Taiwan Co. Ltd. 136, Section 2, Huanjung E. Road Jungli City, Taoyuan Taiwan 320 Tel. +886 3 4371902 Fax +886 3 2830023 info@kuka.com.tw www.kuka.com.tw
Thailand	KUKA Robot Automation (M)SdnBhd Thailand Office c/o Maccall System Co. Ltd. 49/9-10 Soi Kingkaew 30 Kingkaew Road Tt. Rachatheva, A. Bangpli Samutprakarn 10540 Thailand Tel. +66 2 7502737 Fax +66 2 6612355 atika@ji-net.com www.kuka-roboter.de
UK	KUKA Automation + Robotics Hereward Rise Halesowen B62 8AN UK Tel. +44 121 585-0800 Fax +44 121 585-0900 sales@kuka.co.uk
USA	KUKA Robotics Corp. 22500 Key Drive Clinton Township 48036 Michigan USA Tel. +1 866 8735852 Fax +1 586 5692087 info@kukarobotics.com www.kukarobotics.com

Index

Α

Analog inputs and outputs, assigning 36

В

Bus modules 16 Bus terminator 20

С

Cable length 19 Cable, grounding 19 Cables 18 CAN bus 5 Configuration 25 Configuration files 5 Configuration, DeviceNet card 28 Configuring DNSC_xCO.INI, DeviceNet card 29 Configuring DNSC_xSL.INI, DeviceNet 30 Connectors 17

D

Data transmission 7 DeviceNet 5, 23 DeviceNet card 6, 9 DeviceNet card connection 11 DeviceNet card, configuring 28 DeviceNet cards, parallel operation 11 **DeviceNet devices 5** DeviceNet modules 5 DeviceNet, properties 10 **DEVNET.INI 6** DEVNET.INI, configuring, MFC 25 Diagnosis 45 Diagnosis, checking the hardware 48 Diagnosis, error display 45 Digital inputs and outputs, assigning 35 DIO1620, LED indicators 47 DN-DIO 1620 module 15 Drop line 5

Е

EDS file 6, 14 Example 41

G

Generating a log file, MFC 44

I

I/O assignment 35 Installation 17 Introduction 5 IOSYS.INI 6 IOSYS.INI, configuring 32 IOSYS.INI, configuring, MFC 26

Κ

KCP 6 KUKA Customer Support 55

KUKA.HMI 6

L

LED indicators 46

Μ

MACID 6 MFC 6 MFC card 7 MFC connection 8, 23 MFC properties 8 Module properties 16 Modules 5 Multi-power tap 6, 9

0

Offset-Table 38 Opening Telnet 27, 33, 48, 51 Overview 7

Ρ

PLC 6 Polling the device status 51 Product description 7 Properties 7

R

Riser Cage 13

S

Safety instructions 5 Scan list 6 Service, KUKA Roboter 55 Status code table 53 Support request 55

Т

Target group 5 Telnet 6 Telnet command, dnscxGetNodeInfo (MacID) 51 Telnet command, dnscxSetMacId 33 Telnet command, dnscxShow 51 Telnet command. dnscxShowDevice 52 Telnet command, dnShow 1 49 Telnet command, dnWho 49 Telnet diagnosis 50 Telnet diagnosis, MFC card 48 Telnet, changing the baud rate, MFC 27, 33 Telnet, changing the MACID 33 Telnet, changing the MACID, MFC 28 Telnet, polling devices, MFC 49 Telnet, polling the DeviceNet status 51 Telnet, reading I/O data 52 Telnet, reading I/O data, MFC 49 Training program 5 Trunk line 5

W Warnings 5

Issued: 13.12.2007 Version: LastRecent en