© Copyright 2013
KUKA Roboter GmbH
Zugspitzstraße 140
D-86165 Augsburg
Germany

This documentation or excerpts therefrom may not be reproduced or disclosed to third parties without the express permission of KUKA Roboter GmbH.

Other functions not described in this documentation may be operable in the controller. The user has no claims to these functions, however, in the case of a replacement or service work.

We have checked the content of this documentation for conformity with the hardware and software described. Nevertheless, discrepancies cannot be precluded, for which reason we are not able to guarantee total conformity. The information in this documentation is checked on a regular basis, however, and necessary corrections will be incorporated in the subsequent edition.

Subject to technical alterations without an effect on the function.

Translation of the original documentation
KIM-PS5-DOC

Publication: Pub KR C4 EtherNet/IP 2.0 (PDF) en
Bookstructure: KR C4 EtherNet/IP 2.0 V2.1
Version: KR C4 EtherNet/IP 2.0 V2 en (PDF)
Contents

1 Introduction ... 5
 1.1 Target group .. 5
 1.2 Industrial robot documentation ... 5
 1.3 Representation of warnings and notes ... 5
 1.4 Trademarks ... 6
 1.5 Terms used ... 6

2 Product description .. 7

3 Safety .. 9

4 Installation ... 11
 4.1 System requirements ... 11
 4.2 Routing the data cables .. 11
 4.3 Installing or updating EtherNet/IP ... 11
 4.4 Uninstalling EtherNet/IP .. 12

5 Configuration ... 13
 5.1 Overview ... 13
 5.2 Making EDS files available .. 13
 5.3 Making EDS files available for configuration of the PLC with third-party engineering software 14
 5.4 Configuring the bus with WorkVisual ... 14
 5.4.1 Configuring Ethernet/IP scanners ... 14
 5.4.1.1 Address setting .. 15
 5.4.1.2 Device properties .. 16
 5.4.1.3 Chassis/Modules ... 16
 5.4.1.4 Setting parameters .. 17
 5.4.1.5 Module configuration ... 17
 5.4.1.6 Changing the connection type ... 18
 5.4.2 Configuring Ethernet/IP adapters ... 18
 5.4.2.1 “Communication settings” tab ... 19
 5.4.2.2 “Local Slave” tab .. 20
 5.4.2.3 “Local Safety Slave” tab .. 21
 5.5 Mapping inputs/outputs in WorkVisual ... 22
 5.6 Configuring bus device ports .. 23
 5.7 Exporting EDS files ... 24
 5.8 Acyclic communication ... 25
 5.8.1 Configuring the robot controller ... 25
 5.8.2 Configuring the PLC (example) .. 26
 5.8.3 Example of acyclic communication .. 26
 5.9 Safety interface via CIP Safety (optional) .. 29
 5.9.1 Instructions for use of CIP Safety ... 29
 5.9.2 Safety functions via CIP Safety (KR C4) .. 29
 5.9.3 SafeOperation via CIP Safety (optional) .. 34

6 Operation ... 35
 6.1 Coupling/decoupling devices ... 35
 6.1.1 Coupling/decoupling devices via the HMI .. 35
<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>6.1.2 Coupling/decoupling devices via KRL</td>
<td>35</td>
</tr>
<tr>
<td>6.2 Enabling/disabling Quick Connect</td>
<td>36</td>
</tr>
<tr>
<td>6.2.1 Enabling/disabling Quick Connect via HMI</td>
<td>37</td>
</tr>
<tr>
<td>6.2.2 Enabling/disabling Quick Connect via KRL</td>
<td>37</td>
</tr>
<tr>
<td>6.3 Resetting the EtherNet/IP driver</td>
<td>37</td>
</tr>
<tr>
<td>7 Diagnosis</td>
<td>39</td>
</tr>
<tr>
<td>7.1 Displaying diagnostic data</td>
<td>39</td>
</tr>
<tr>
<td>7.1.1 EtherNet/IP scanner (EIP-SCANNER)</td>
<td>39</td>
</tr>
<tr>
<td>7.1.2 EtherNet/IP adapter (EIP-ADAPTER)</td>
<td>39</td>
</tr>
<tr>
<td>7.1.3 EtherNet/IP device</td>
<td>39</td>
</tr>
<tr>
<td>7.1.4 Ethernet/IP local slave</td>
<td>40</td>
</tr>
<tr>
<td>7.1.5 Ethernet/IP local safety slave</td>
<td>41</td>
</tr>
<tr>
<td>7.1.6 EtherNet/IP I/O driver (EIPIODRIVER)</td>
<td>43</td>
</tr>
<tr>
<td>7.2 Advanced device diagnosis</td>
<td>43</td>
</tr>
<tr>
<td>8 Messages</td>
<td>45</td>
</tr>
<tr>
<td>9 KUKA Service</td>
<td>47</td>
</tr>
<tr>
<td>9.1 Requesting support</td>
<td>47</td>
</tr>
<tr>
<td>9.2 KUKA Customer Support</td>
<td>47</td>
</tr>
<tr>
<td>Index</td>
<td>55</td>
</tr>
</tbody>
</table>
1 Introduction

1.1 Target group

This documentation is aimed at users with the following knowledge and skills:

- Advanced KRL programming skills
- Advanced knowledge of the robot controller system
- Advanced knowledge of field buses
- Knowledge of WorkVisual
- Knowledge of the software RSLogix 5000

For optimal use of our products, we recommend that our customers take part in a course of training at KUKA College. Information about the training program can be found at www.kuka.com or can be obtained directly from our subsidiaries.

1.2 Industrial robot documentation

The industrial robot documentation consists of the following parts:

- Documentation for the manipulator
- Documentation for the robot controller
- Operating and programming instructions for the KUKA System Software
- Documentation relating to options and accessories
- Parts catalog on storage medium

Each of these sets of instructions is a separate document.

1.3 Representation of warnings and notes

Safety

These warnings are relevant to safety and must be observed.

⚠️ DANGER These warnings mean that it is certain or highly probable that death or severe injuries will occur, if no precautions are taken.

⚠️ WARNING These warnings mean that death or severe injuries may occur, if no precautions are taken.

⚠️ CAUTION These warnings mean that minor injuries may occur, if no precautions are taken.

⚠️ NOTICE These warnings mean that damage to property may occur, if no precautions are taken.

These warnings contain references to safety-relevant information or general safety measures. These warnings do not refer to individual hazards or individual precautionary measures.

This warning draws attention to procedures which serve to prevent or remedy emergencies or malfunctions:

⚠️ SAFETY INSTRUCTIONS Procedures marked with this warning must be followed exactly.
Notes
These hints serve to make your work easier or contain references to further information.

1.4 Trademarks

Windows is a trademark of Microsoft Corporation.
RSLogix is a trademark of Rockwell Automation Inc.

1.5 Terms used

<table>
<thead>
<tr>
<th>Term</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>EDS file</td>
<td>Device description file for EtherNet/IP</td>
</tr>
<tr>
<td>Industrial Ethernet</td>
<td>Ethernet is a data network technology for local area networks (LANs). It allows data to be exchanged between the connected devices in the form of data frames.</td>
</tr>
<tr>
<td>PLC</td>
<td>Programmable logic controller</td>
</tr>
<tr>
<td>Subnet</td>
<td>Subnetwork in the Internet Protocol (IP)</td>
</tr>
<tr>
<td>Subnet mask</td>
<td>Defines which IP addresses a device looks for in its own network and which addresses can be reached in other networks.</td>
</tr>
</tbody>
</table>
2 Product description

EtherNet/IP is an Ethernet-based field bus. Data exchange is carried out on a client-server basis.

EtherNet/IP is installed on the robot controller.

Compatibility
KR C4 EtherNet/IP 2.0 is compatible with the following field buses:
- KR C4 DeviceNet
- KR C4 EtherCAT

Functions
The following functions are supported:
- EtherNet/IP IO (cyclical communication)
- Explicit Messaging (acyclic communication)
- Quick Connect
- CIP Safety

Limitations
The Explicit Messaging function can only be used in conjunction with the EtherNet/IP IO function.

Configuration software
EtherNet/IP is configured on a laptop or PC. The following software is required for configuration:
- WorkVisual 3.0 or higher
- Depending on the selected procedure, additional configuration software may be required:
 - RSLogix 5000 from Rockwell Automation

For configuration of a higher-level controller, the corresponding configuration software from the manufacturer is also required, e.g. RSLogix 5000 from Rockwell Automation.

Device types
The following device types are used with EtherNet/IP:
- Scanner: a higher-level controller that controls all the components of a system.
- Adapter: a field device subordinated to a scanner. Adapters are also referred to as devices in this document.

The 2 device types have relationships for transferring configuration data and process data.

A physical device, e.g. the robot controller, can be a scanner and/or an adapter. The configuration of communication relationships is carried out solely in the scanner.
This documentation contains safety instructions which refer specifically to the product described here. The fundamental safety information for the industrial robot can be found in the “Safety” chapter of the operating or assembly instructions for the robot controller.

![WARNING] The “Safety” chapter in the operating instructions or assembly instructions of the robot controller must be observed. Death to persons, severe injuries or considerable damage to property may otherwise result.
4 Installation

4.1 System requirements

Robot controller

Hardware:
- KR C4
- Or KR C4 compact

Software:
- KUKA System Software 8.3

Laptop/PC

Software:
- WorkVisual 3.0 or higher
 The requirements for installation of WorkVisual are contained in the WorkVisual documentation.
- RSLogix 5000
 The requirements for installation of RSLogix are contained in the documentation of this software.
- Rockwell BOOTP-DHCP server
 The Rockwell BOOTP-DHCP server allows dynamic IP addresses to be assigned. The software can be found on the WorkVisual CD, in the directory Tools\BOOTP-DHCP. To install the software, start the program Setup.exe from the CD.

4.2 Routing the data cables

- The Industrial Ethernet cables are routed to the adapters from the scanner or from the switch using a star or ring topology.

4.3 Installing or updating EtherNet/IP

Preparation
- Copy software from CD to KUKA USB stick.
 The software must be copied onto the stick with the file Setup.exe at the highest level (i.e. not in a folder).

Precondition
- “Expert” user group

Procedure
1. Connect the USB stick to the robot controller or smartPAD.
2. In the main menu, select Start-up > Additional software.
3. Press New software. The entry KRC4 EtherNet/IP must be displayed in the Name column and drive E:\ or K:\ in the Path column.
 If not, press Refresh.
4. If the specified entries are now displayed, continue with step 5.
If not, the drive from which the software is being installed must be configured first:

- Click on the Configuration button. A new window opens.
- Select a line in the Installation paths for options area.
 Note: If the line already contains a path, this path will be overwritten.
- Press Path selection. The available drives are displayed.
- Select E:\. (If stick connected to the robot controller.)
 Or select K:\. (If stick connected to the smartPAD.)
- Press Save. The window closes again.
 The drive only needs to be configured once and then remains saved for further installations.

5. Select the entry **KRC4 EthernetIP** and press **Install**. Answer the request for confirmation with **Yes**.
6. Confirm the reboot prompt with **OK**.
7. Remove the stick.
8. Reboot the robot controller.

LOG file
A LOG file is created under C:\KRC\ROBOTER\LOG.

4.4 Uninstalling EtherNet/IP

- It is advisable to archive all relevant data before uninstalling a software package.

Precondition
- “Expert” user group

Procedure
1. In the main menu, select Start-up > Additional software.
2. Select the entry **KRC4 EthernetIP** and press **Uninstall**. Reply to the request for confirmation with **Yes**. Uninstallation is prepared.
3. Reboot the robot controller. Uninstallation is resumed and completed.

LOG file
A LOG file is created under C:\KRC\ROBOTER\LOG.
5 Configuration

5.1 Overview

<table>
<thead>
<tr>
<th>Step</th>
<th>Description</th>
</tr>
</thead>
</table>
| 1 | Configure the higher-level controller with the configuration software provided by the manufacturer of the higher-level controller.
Note: This step only needs to be carried out if a higher-level controller is being used. |
| 2 | Make EDS files available (optional).
(>>> 5.2 "Making EDS files available" Page 13)
(>>> 5.3 "Making EDS files available for configuration of the PLC with third-party engineering software" Page 14) |
| 3 | Configure Ethernet/IP.
(>>> 5.4 "Configuring the bus with WorkVisual" Page 14) |
| 4 | Map the inputs and outputs in WorkVisual.
(>>> 5.5 "Mapping inputs/outputs in WorkVisual" Page 22) |
| 5 | Transfer the bus configuration from WorkVisual to the robot controller. |
| 6 | Reboot the robot controller. |
| 7 | Configure bus device ports (optional).
(>>> 5.6 "Configuring bus device ports" Page 23) |
| 8 | Export EDS files (optional).
(>>> 5.7 "Exporting EDS files" Page 24) |
| 9 | Configure acyclic communication (optional).
(>>> 5.8 "Acyclic communication" Page 25) |
| 10 | Safety interface via CIP Safety (optional)
(>>> 5.9 "Safety interface via CIP Safety (optional)" Page 29) |

Information about procedures in WorkVisual is contained in the WorkVisual documentation. Information about procedures in the configuration software from the manufacturer of the higher-level controller can be found in the documentation for this configuration software.

If the higher-level controller is configured with the RSLogix software, the module type **Generic Ethernet Module** must be used.

5.2 Making EDS files available

An EDS file can be used for the configuration of a device. It is also possible to configure a device without an EDS file. In the case of modular devices, an EDS file is required for each module. EDS files must be obtained from the manufacturer of the device.

Precondition
- A robot controller has been added and set as active.

Procedure
1. Expand the tree structure of the robot controller on the **Hardware** tab in the **Project structure** window.
2. Right-click on **Bus structure** and select **Add…** from the context menu.
3. A window opens. Select the entry **EtherNet/IP** and confirm with **OK**. The entry is inserted in the tree structure.
4. Right-click on the entry **EtherNet/IP** and select the menu sequence **Functions > Add EDS to library**.
5. A wizard is opened. Click on **Next >**.
6. Click on **Browse…** and specify a directory.
7. Confirm with **Next >**.
 A list of the EDS files to be added to the library is displayed.
8. Confirm with **Next >**.
9. Click on **Finish**.
 The EDS files are added to the library.
10. Close and save the project with **File > Close**.
11. Select the menu sequence **Extras > DTM Catalog Management...**.
12. Click on **Search for installed DTMs**. The catalog scan is started
13. Under **Known DTMs**, select the required files and click on the **Right arrow** button. The selected files are displayed under **Current DTM Catalog**.
14. Click on **OK** to end the catalog scan.

If there is already a different version of an EDS file present on the hard drive, the user is asked to confirm whether the file on the hard drive should be overwritten. If the file to be added is required for a project, overwriting the file on the hard drive with this file is recommended. Otherwise, the project may be impossible to open.

5.3 Making EDS files available for configuration of the PLC with third-party engineering software

Description
If a KUKA robot controller is added as a device on the PLC with third-party engineering software, this software requires the EDS file for the KUKA robot controller.

Procedure
1. Copy the EDS file of the KUKA robot controller.
 The file can be found on the WorkVisual CD-ROM, in the following directory: **DeviceDescriptions\EDS**
 - For the EtherNet/IP adapter: **KCR4ScannerAdapter.eds**
 - For the safety interface via CIP Safety: **KCR4SafeAdapter.eds**
2. Add the file in the third-party engineering software.

5.4 Configuring the bus with WorkVisual

With certain EtherNet/IP devices, the full range of functions can only be used if the manufacturer’s software (e.g. Web Server or RSPLogix) is used for configuration.

5.4.1 Configuring Ethernet/IP scanners

Precondition
- A robot controller has been added and set as active.
- The **EtherNet/IP** node is inserted into the bus structure.

Procedure
1. Expand the tree structure of the robot controller on the **Hardware** tab in the **Project Structure** window.
2. Right-click on **EtherNet/IP** and select **Add…** from the context menu.
3. A window opens with a list of devices. Select the device used and confirm with OK. The device is inserted in the tree structure.

NOTICE The inserted device must correspond to the actual device used in reality. Substantial damage to property may otherwise result.

4. Right-click on the device in the tree structure and select Settings... from the context menu. A window with the device data is opened.

5. Enter the IP address of the device on the Address Setting tab.

 (>>> 5.4.1.1 "Address setting" Page 15)

6. On the Device Properties tab, fill out the following boxes:
 - Number; Is Active; Device name

 (>>> 5.4.1.2 "Device properties" Page 16)

Steps 7 and 8 are only relevant for modular devices. In the case of non-modular devices or configuration without an EDS file, the Chassis/Modules tab is not available.

7. Select the chassis type used on the Chassis/Modules tab and assign the modules used to the slots.

 (>>> 5.4.1.3 "Chassis/Modules" Page 16)

8. Configure the modules.

 (>>> 5.4.1.4 "Setting parameters" Page 17)

9. Save the device data with OK.

10. If necessary, repeat steps 4 to 9 for further devices.

5.4.1.1 Address setting

![Address Setting tab](image)

Fig. 5-1: “Address Setting” tab

<table>
<thead>
<tr>
<th>Box</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>IP address</td>
<td>Enter the IP address of the device.</td>
</tr>
</tbody>
</table>
5.4.1.2 Device properties

Fig. 5-2: “Device Properties” tab

<table>
<thead>
<tr>
<th>Box</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Number</td>
<td>Select the number of the device.</td>
</tr>
<tr>
<td>Is Active</td>
<td></td>
</tr>
<tr>
<td>Enabled</td>
<td>The robot controller expects the device to be active when the controller boots up. If the device is not active, the robot controller issues an error message.</td>
</tr>
<tr>
<td>Disabled</td>
<td>The robot controller does not check whether the device is active when the controller boots up.</td>
</tr>
<tr>
<td>Device name</td>
<td>Enter the name of the device (optional).</td>
</tr>
<tr>
<td>Note</td>
<td>If a name is entered, it is displayed in the diagnostic monitor of smartHMI. If nothing is entered, the default name is displayed.</td>
</tr>
</tbody>
</table>

5.4.1.3 Chassis/Modules

Fig. 5-3: “Chassis/Modules” tab
5.4.1.4 Setting parameters

Precondition
- A robot controller has been added and set as active.
- The EtherNet/IP node is inserted into the bus structure.
- A device is added to the bus and the modules of the device are assigned to the slots.

Procedure
1. Right-click on the device in the tree structure and select Settings... from the context menu. A window with the device data is opened. The modules are displayed in the box to the left of the tabs.
 (>>> 5.4.1.5 "Module configuration" Page 17)
2. Click on the connection type under the module, e.g. Rack Optimization. The tabs General, Identity Check and Configuration Settings are displayed.

 Information about the parameters that can be set in these tabs is displayed in the Description box by clicking on the parameter.

 The connection type can be changed.
 (>>> 5.4.1.6 "Changing the connection type" Page 18)

3. Make the desired settings and save them by pressing OK.

5.4.1.5 Module configuration

![Module configuration, example](image)

Box	**Description**
Chassis type available in device library | Select the type of chassis used.
Example: A bus coupler with 6 slots has 7 chassis.

Module | Assign the modules used to the slots by means of the right arrow.
5.4.1.6 Changing the connection type

Precondition
- A robot controller has been added and set as active.
- The EtherNet/IP node is inserted into the bus structure.
- A device is added to the bus and the modules of the device are assigned to the slots.

Procedure
1. Right-click on the device in the tree structure and select **Settings**… from the context menu. A window with the device data is opened. The modules are displayed in the box to the left of the tabs.
 (>>> 5.4.1.5 "Module configuration" Page 17)
2. Select the module and click on **Remove Connection**.
3. Click on **Add Connection**.
4. Select the connection type and confirm with **OK**.

5.4.2 Configuring Ethernet/IP adapters

Precondition
- A robot controller has been added and set as active.
- The EtherNet/IP node is inserted into the bus structure.

Procedure
1. Expand the tree structure of the robot controller on the **Hardware** tab in the **Project structure** window.
2. Right-click on **EtherNet/IP** in the tree structure and select **Settings** from the context menu.
3. A window opens. Fill out the following boxes on the **Communication settings** tab:
 - Begin detection range address; End detection range address;
 Bus timeout; Scanner IP address
 (>>> 5.4.2.1 "Communication settings" tab" Page 19)
4. Save the setting with **Apply**.
5. The local slaves can be configured in the tabs **Local Slave 1** to **Local Slave 5**.
 (>>> 5.4.2.2 ""Local Slave" tab" Page 20)
6. Only if the safety interface via CIP Safety is used: Configure the local safety slave on the **Local Safety Slave** tab.
 (>>> 5.4.2.3 ""Local Safety Slave" tab" Page 21)
7. Save the settings by selecting **OK**.

Item

<table>
<thead>
<tr>
<th>Item</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Device</td>
</tr>
<tr>
<td>2</td>
<td>Bus coupler</td>
</tr>
<tr>
<td>3</td>
<td>Module</td>
</tr>
<tr>
<td>4</td>
<td>Connection type</td>
</tr>
</tbody>
</table>
| | - **Rack Optimization**: Connection type for digital input and output modules
 This connection type can be used to group several modules together.
| | - **Direct Input Only**: Connection type for analog and digital input modules
| | - **Direct Exclusive Owner**: Connection type for analog and digital output modules

- [Item](#item)
5.4.2.1 “Communication settings” tab

Fig. 5-5: “Communication settings” tab

<table>
<thead>
<tr>
<th>Box</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>EtherNet/IP network detection</td>
<td></td>
</tr>
<tr>
<td>Begin detection range address:</td>
<td>If a start address is entered, the system only looks for IP addresses that are greater than or equal to the entered IP address.</td>
</tr>
<tr>
<td>End detection range address:</td>
<td>If an end address is entered, the system only looks for IP addresses that are less than or equal to the entered IP address.</td>
</tr>
<tr>
<td>Adapter</td>
<td></td>
</tr>
<tr>
<td>Bus timeout:</td>
<td>If the robot controller cannot establish the connection to the PLC within this time, it generates an error message. (If the connection is then established subsequently, the message changes to an acknowledgement message.)</td>
</tr>
<tr>
<td></td>
<td>Unit: ms</td>
</tr>
<tr>
<td>Scanner</td>
<td></td>
</tr>
<tr>
<td>Scanner IP address:</td>
<td>Enter the IP address of the EtherNet/IP scanner.</td>
</tr>
<tr>
<td>Note:</td>
<td>The IP address of the scanner is required for diagnosis.</td>
</tr>
<tr>
<td>Bus timeout:</td>
<td>If the robot controller cannot establish the connection to the device within this time, it generates an error message. (If the connection is then established subsequently, the message changes to an acknowledgement message.)</td>
</tr>
<tr>
<td></td>
<td>Unit: ms</td>
</tr>
</tbody>
</table>
5.4.2.2 “Local Slave” tab

Fig. 5-6: “Local Slave” tab

The default settings (>>> Fig. 5-6) can be retained for those boxes which are not described here.

<table>
<thead>
<tr>
<th>Box</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Properties</td>
<td></td>
</tr>
<tr>
<td>Active configuration:</td>
<td>■ Activated: Local slave is used.</td>
</tr>
<tr>
<td></td>
<td>■ Deactivated: Local slave is not used.</td>
</tr>
<tr>
<td></td>
<td>Deactivated is selected by default.</td>
</tr>
<tr>
<td></td>
<td>Note: This function is not the same as the Is Active function. If Activated is selected, the local slave is saved to the configuration; until then, it is not available in the configuration.</td>
</tr>
<tr>
<td>Device name:</td>
<td>Enter the name of the local slave (optional).</td>
</tr>
<tr>
<td></td>
<td>Note: If a name is entered, it is displayed in the diagnostic monitor of smartHMI. If nothing is entered, the default name is displayed.</td>
</tr>
<tr>
<td>Bus error bit</td>
<td></td>
</tr>
<tr>
<td>Enable bus error bit</td>
<td>■ Activated: In the case of a bus error, a status bit is sent to the PLC.</td>
</tr>
<tr>
<td></td>
<td>■ Deactivated: No status bit is sent to the PLC.</td>
</tr>
<tr>
<td></td>
<td>By default, the check box is deactivated.</td>
</tr>
<tr>
<td>Bus error bit number:</td>
<td>Enter the number of the status bit in the address range of the local slave.</td>
</tr>
<tr>
<td></td>
<td>0 … 4071 bits</td>
</tr>
<tr>
<td></td>
<td>Default value: 1 bit</td>
</tr>
</tbody>
</table>

Assembly
5.4.2.3 “Local Safety Slave” tab

<table>
<thead>
<tr>
<th>Box</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Outputs (T -> O) - Size:</td>
<td>Number of outputs of the local slave</td>
</tr>
<tr>
<td></td>
<td>1 … 509 bytes</td>
</tr>
<tr>
<td></td>
<td>Default value: 256 bytes</td>
</tr>
<tr>
<td>Inputs (O -> T) Size:</td>
<td>Number of inputs of the local slave</td>
</tr>
<tr>
<td></td>
<td>1 … 505 bytes</td>
</tr>
<tr>
<td></td>
<td>Default value: 256 bytes</td>
</tr>
</tbody>
</table>

![Fig. 5-7: “Local Safety Slave” tab](image)

Active configuration:
- **Activated:** Local safety slave is used.
- **Deactivated:** Local safety slave is not used.

Deactivated is selected by default.

Note: This function is not the same as the Is Active function. If Activated is selected, the local slave is saved to the configuration; until then, it is not available in the configuration.

Device name:
Enter the name of the local safety slave (optional).

Note: If a name is entered, it is displayed in the diagnostic monitor of smartHMI. If nothing is entered, the default name is displayed.
5.5 Mapping inputs/outputs in WorkVisual

Procedure
- Map the inputs/outputs in WorkVisual.

Signal names of local slaves
The EtherNet/IP signal names of the local slaves have the following structure in WorkVisual:

<table>
<thead>
<tr>
<th>Box</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Outputs (T → O) / Inputs (O → T) - Size</td>
<td>Number of inputs and outputs of the local safety slave</td>
</tr>
<tr>
<td></td>
<td>2 bytes: For standard safety functions without SafeOperation, SafeRangeMonitoring and SafeSingleBrake</td>
</tr>
<tr>
<td></td>
<td>8 bytes: For standard safety functions with SafeOperation, SafeRangeMonitoring and SafeSingleBrake</td>
</tr>
<tr>
<td>Default value: 2 bytes</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>I/O</th>
<th>Name</th>
<th>Type</th>
<th>Address</th>
</tr>
</thead>
<tbody>
<tr>
<td>></td>
<td>001:0001 Input</td>
<td>BYTE</td>
<td>0</td>
</tr>
<tr>
<td>></td>
<td>001:0001 Output</td>
<td>BYTE</td>
<td>0</td>
</tr>
<tr>
<td>></td>
<td>001:0002 Input</td>
<td>BYTE</td>
<td>1</td>
</tr>
<tr>
<td>></td>
<td>001:0002 Output</td>
<td>BYTE</td>
<td>1</td>
</tr>
<tr>
<td>></td>
<td>001:0003 Input</td>
<td>BYTE</td>
<td>2</td>
</tr>
<tr>
<td>></td>
<td>001:0003 Output</td>
<td>BYTE</td>
<td>2</td>
</tr>
</tbody>
</table>

Fig. 5-8: EtherNet/IP signal names of the local slaves in WorkVisual

Example: 001:0001 Input

<table>
<thead>
<tr>
<th>Name</th>
<th>Meaning</th>
<th>In the example</th>
</tr>
</thead>
<tbody>
<tr>
<td>1st value from left</td>
<td>Number of the device</td>
<td>001</td>
</tr>
<tr>
<td>2nd value from left</td>
<td>Index number (consecutive ascending numbering of the individual inputs/outputs)</td>
<td>0001</td>
</tr>
<tr>
<td>Input/Output</td>
<td>Direction of processing</td>
<td>Input</td>
</tr>
</tbody>
</table>

Signal names of devices
The EtherNet/IP signal names of the EtherNet/IP devices have the following structure in WorkVisual:

<table>
<thead>
<tr>
<th>I/O</th>
<th>Name</th>
<th>Type</th>
<th>Address</th>
</tr>
</thead>
<tbody>
<tr>
<td>></td>
<td>000:0001:0003 Output</td>
<td>BYTE</td>
<td>8</td>
</tr>
<tr>
<td>></td>
<td>000:0001:0004 Input (Slot01_Data_BIT_0)</td>
<td>BCCL</td>
<td>9</td>
</tr>
<tr>
<td>></td>
<td>000:0001:0004 Output</td>
<td>BYTE</td>
<td>9</td>
</tr>
<tr>
<td>></td>
<td>000:0001:0005 Input (Slot01_Data_BIT_1)</td>
<td>BCCL</td>
<td>91</td>
</tr>
<tr>
<td>></td>
<td>000:0001:0005 Output (Slot02_Data_BIT_0)</td>
<td>BCCL</td>
<td>10</td>
</tr>
<tr>
<td>></td>
<td>000:0001:0006 Input (Slot01_Data_BIT_2)</td>
<td>BCCL</td>
<td>92</td>
</tr>
</tbody>
</table>

Fig. 5-9: EtherNet/IP signal names of the devices in WorkVisual

Example: 000:0001:0005 Input (Slot01_Data_BIT_1)
5.6 Configuring bus device ports

Description

For error-free operation of EtherNet/IP, it is recommended that all Ethernet connections between the bus devices have the configuration 100 MB Full Duplex. For this, 2 ports that are connected to one another must have the same configuration: either 100 MB Full Duplex or Autonegotiation. In the following figure, for example, these are the KLI on the robot controller and port 1 on the switch.

By default, the KLI has the configuration Autonegotiation. The port connected to it should thus have the same configuration.

Configuration of the ports can be carried out in WorkVisual by means of explicit messaging.

<table>
<thead>
<tr>
<th>Name</th>
<th>Meaning</th>
<th>In the example</th>
</tr>
</thead>
<tbody>
<tr>
<td>1st value from left</td>
<td>Number of the module</td>
<td>000</td>
</tr>
<tr>
<td>Note: If the connection type</td>
<td>Rack Optimization is used, multiple modules can be grouped together as</td>
<td></td>
</tr>
<tr>
<td></td>
<td>a single module.</td>
<td></td>
</tr>
<tr>
<td>2nd value from left</td>
<td>Index for every connection in the module (in the case of modular devices) or in the device (in the case of non-modular devices).</td>
<td>0001</td>
</tr>
<tr>
<td>3rd value from left</td>
<td>Index number (consecutive ascending numbering of the individual inputs/outputs)</td>
<td>0005</td>
</tr>
<tr>
<td>Input/Output</td>
<td>Direction of processing</td>
<td>Input</td>
</tr>
<tr>
<td>Text in brackets</td>
<td>Comment by the manufacturer The comment indicates which inputs/outputs belong to a module.</td>
<td>(Slot01_Data_BIT_1)</td>
</tr>
</tbody>
</table>

Fig. 5-10: Example of a bus structure

1 Robot controller
2 Switch
3 Port
4 Connecting cable with 100 MB Full Duplex
5 Device 2
6 Device 1
Precondition

- The robot controller has been set as the active controller.
- The bus devices to be configured are connected and can be accessed via the network.

Procedure

1. Expand the tree structure of the robot controller on the Hardware tab in the Project structure window.
2. Right-click on EtherNet/IP in the tree structure and select Connect from the context menu.
3. Right-click on EtherNet/IP and select Functions > Extended mode.
4. Right-click on EtherNet/IP and select Functions > Explicit Ethernet/IP messaging.
5. Fill out the following boxes:
 - **IP address**: IP address of the device
 - **Class**: 0xF6
 - **Instance**: Port number
 - **Attribute**: 6
 - **Service**: Set_Attribute_Single
 - **Data**: Settings in hexadecimal notation, Intel format
6. Save the settings with Close.

Example

Example for configuration of 100 MB Full Duplex for port 1 of a device:

- **Class**: 0xF6
- **Instance**: 1
- **Attribute**: 6
- **Service**: Set_Attribute_Single
- **Data**: 02 00 64 00

5.7 Exporting EDS files

In order, for example, to be able to use a project on a different computer, the EDS files used must be exported.

In the case of modular devices, multiple EDS files must be exported. For non-modular devices, a single EDS file is exported.

Precondition

- A robot controller has been added and set as active.
- The EtherNet/IP node is inserted into the bus structure.
- A device is added to the bus.

Procedure for modular device

1. Right-click on the device in the tree structure and select Functions > Export EDS in the context menu.
2. A window opens. Select the directory to which the EDS files are to be exported.
3. Confirm the selection with OK.

 The files are exported to the specified directory.

Procedure for non-modular device

1. Right-click on the device in the tree structure and select Functions > Export EDS in the context menu.
2. A window opens. Select the directory to which the EDS file is to be exported.
 The name of the EDS file can be changed.
3. Click on Save.
The file is exported to the specified directory.

5.8 Acyclic communication

Acyclic communication can only be used in conjunction with cyclical communication.

Description
A PLC can exchange acyclic data with the applications on the robot controller (e.g. KRL). For this, various parameters must be configured in the corresponding PLC module and in the KRL program.

The maximum length of the data that can be received by the PLC is 1406 bytes. The maximum length of the data that can be sent to the PLC is 1410 bytes. The communication device with the lowest maximum length is decisive, however.

The data format is not predefined. The interpretation of the data is the responsibility of the PLC and KRL programmers.

PLC program
The following parameters must be configured in the corresponding PLC module:

- Class ID = 0x64
- Instance Number = 1
- Attribute Number = 1
- Service Read = 0x32
- Service Write = 0x33

The PLC configuration is described in the following section, taking a Rockwell PLC by way of example:

>>> 5.8.2 "Configuring the PLC (example)" Page 26

KRL program
The following parameters must be configured in the KRL program:

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>CmdID</td>
<td>Command ID</td>
</tr>
<tr>
<td></td>
<td>1: Read data</td>
</tr>
<tr>
<td></td>
<td>2: Write data</td>
</tr>
<tr>
<td>CmdLen</td>
<td>Length of command</td>
</tr>
<tr>
<td>UserData</td>
<td>User data</td>
</tr>
<tr>
<td></td>
<td>0 … 255</td>
</tr>
</tbody>
</table>

5.8.1 Configuring the robot controller

In order to enable acyclic communication, the robot controller must be configured accordingly.

Precondition
- The EtherNet/IP adapter has been mapped to KRL inputs and outputs in WorkVisual.
- “Expert” user group

Procedure
1. Open the file AsyncDataToKrl.xml in the directory C:\KRC\ROBOT-ER\Config\User\Common.
2. Adapt the entry <IODriver IODrvName="PNIO-DEV" /> as follows: <IODriver IODrvName="EIP-ADAPTER" />.
3. Save and close the file.
4. Open the file $custom.dat in the directory KRC: \ STEU \ Mada.
5. Adapt the entry `DECL EXT_MOD_T $EXT_MOD_1={[O_FILE][]"",OPTION 'B0000'} as follows: `DECL EXT_MOD_T $EXT_MOD_1={[O_FILE][]"drivers/asyncdatatokrl.o",OPTION 'B0010'}`
6. Save and close the file.
7. Reboot the robot controller. For this, select Shutdown in the main menu and select the option Reload files.

5.8.2 Configuring the PLC (example)

The PLC configuration is described below, taking a Rockwell PLC by way of example.

Procedure
- Make the following settings on the Configuration tab in the Message Configuration window:

<table>
<thead>
<tr>
<th>Box</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Message Type</td>
<td>CIP Generic</td>
</tr>
<tr>
<td>Service Type</td>
<td>Custom</td>
</tr>
<tr>
<td>Service Code</td>
<td>32</td>
</tr>
<tr>
<td>Class</td>
<td>64</td>
</tr>
<tr>
<td>Instance</td>
<td>1</td>
</tr>
<tr>
<td>Attribute</td>
<td>1</td>
</tr>
</tbody>
</table>

Example

PLC program

```plaintext
// read cmd 1, cmd len 8
IF KUKA:I.Data[0].0 THEN
    ReqDataBufRead[0] := 1;
    ReqDataBufRead[1] := 8;
    MSG( MsgCtrlRead);
END_IF;

// write cmd 2, cmd len 8, Data = 0x1 0x2 0x3 0x4 0x1 0x2 0x3 0x4
IF KUKA:I.Data[0].1 THEN
    ReqDataBufWrite[0] := 2;
    ReqDataBufWrite[1] := 8;
    ReqDataBufWrite[2] := 16909060;
    ReqDataBufWrite[3] := 16909060;
    MSG( MsgCtrlWrite);
END_IF;
```

5.8.3 Example of acyclic communication

Example of acyclic communication in the program SPS.SUB:
... 3 DECL INT nHandle, tmpInt, retVal
4 DECL STATE_T Stat
5 DECL MODUS_T WMode
6 DECL MODUS_T RMode
7 DECL REAL TimeOut
8 DECL INT Offset
9
10 ; Header
11 DECL INT CmdID
12 INT CmdLen
13 ; Command structure
14 ; User data
15 DECL INT UserData
16 DECL CHAR Buffer[1000]
17 DECL CHAR TmpStr[150]
...
...
61 CRead (nHandle, Stat, RMode, TimeOut, Offset, "%r", Buffer[]);
62 If (Stat.Ret1==#DATA_END) then
63 Offset=0
64 CAST_FROM(Buffer[],Offset, CmdID)
65 CAST_FROM(Buffer[],Offset, CmdLen)
66 if (CmdID == 1) then
67 ;--- PLC READ
68 Offset=0
69 wait for strClear(TMPSTR[])
70 SWRITE(TMPSTR[],STAT,Offset,"CmdId=%d CmdLen=%d", CmdID, CmdLen)
71 $loop_msg[]="TMPSTR[]"
72 wait sec 1
73 ; --- Prepare Read Response
74 CmdID = 1
75 CmdLen = 8
76 UserData = 255;
77 Offset=0
78 CAST_TO(Buffer[],Offset,CmdID)
79 CAST_TO(Buffer[],Offset,CmdLen)
80 CWrite (nHandle,Stat,WMode,"%1.16r",Buffer[])
81 else
82 if (CmdID == 2) then
83 ;--- PLC WRITE
84 CAST_FROM(Buffer[],Offset, UserData);
85 Offset=0
86 wait for strClear(TMPSTR[])
87 SWRITE(TMPSTR[],STAT,Offset,"CmdId=%d CmdLen=%d UserData=%d", CmdID, CmdLen, UserData)
88 $loop_msg[]="TMPSTR[]"
89 wait sec 1
90 ; --- Prepare Write Response
91 CmdLen = 8
92 Offset=0
93 CAST_TO(Buffer[],Offset,CmdID)
94 CAST_TO(Buffer[],Offset,CmdLen)
95 CWrite (nHandle,Stat,WMode,"%1.8r",Buffer[])
96 Wait for (Stat.Ret1==#DATA_OK)
97 endif
98 endif

<table>
<thead>
<tr>
<th>Line</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>3 ... 17</td>
<td>Declaration section</td>
</tr>
<tr>
<td>68</td>
<td>CmdID == 1: The higher-level controller requests data from the robot controller via a read command.</td>
</tr>
<tr>
<td>79 ... 90</td>
<td>The robot controller reads the request.</td>
</tr>
<tr>
<td>107 ... 115</td>
<td>The robot controller replies to the higher-level controller.</td>
</tr>
</tbody>
</table>
5.9 Safety interface via CIP Safety (optional)

5.9.1 Instructions for use of CIP Safety

- For each safety network or safety subnet, SNN numbers that only occur once in the entire system should be defined (FRS154).
- The SCID must be set to 0. The user is responsible for ensuring that the PLC and robot controller are correctly configured (FRS103).
- The configuration of the safe connection between the PLC and the robot controller must be tested by the user to make sure that it is functioning correctly (SRS92).
- Before setting a lock, the functional capability of the system must be tested by the user (SRS50).

5.9.2 Safety functions via CIP Safety (KR C4)

Description
The exchange of safety-relevant signals between the controller and the system is carried out via CIP Safety. The assignment of the input and output states within the CIP Safety protocol are listed below. In addition, non-safety-oriented information from the safety controller is sent to the non-safe section of the higher-level controller for the purpose of diagnosis and control.

Reserved bits
Reserved safe inputs can be pre-assigned by a PLC with the values 0 or 1. In both cases, the manipulator will move. If a safety function is assigned to a reserved input (e.g. in the case of a software update) and if this input is preset with the value 0, then the manipulator would either not move or would unexpectedly come to a standstill.

KUKA recommends pre-assignment of the reserved inputs with 1. If a reserved input has a new safety function assigned to it, and the input is not used by the customer’s PLC, the safety function is not activated. This prevents the safety controller from unexpectedly stopping the manipulator.

Input byte 0

<table>
<thead>
<tr>
<th>Bit</th>
<th>Signal</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>RES</td>
<td>Reserved 1</td>
</tr>
<tr>
<td></td>
<td></td>
<td>The value 1 must be assigned to the input.</td>
</tr>
<tr>
<td>1</td>
<td>NHE</td>
<td>Input for external Emergency Stop</td>
</tr>
<tr>
<td></td>
<td></td>
<td>0 = external E-STOP is active</td>
</tr>
<tr>
<td></td>
<td></td>
<td>1 = external E-STOP is not active</td>
</tr>
<tr>
<td>2</td>
<td>BS</td>
<td>Operator safety</td>
</tr>
<tr>
<td></td>
<td></td>
<td>0 = operator safety is not active, e.g. safety gate open</td>
</tr>
<tr>
<td></td>
<td></td>
<td>1 = operator safety is active</td>
</tr>
</tbody>
</table>
Precondition for acknowledgement of operator safety is the signal "Operator safety assured" set in the BS bit.

Note: If the “BS” signal is acknowledged by the system, this must be specified under Hardware options in the safety configuration. Information is contained in the Operating and Programming Instructions for System Integrators.

<table>
<thead>
<tr>
<th>Bit</th>
<th>Signal</th>
<th>Description</th>
</tr>
</thead>
</table>
| 3 | QBS | Acknowledgement of operator safety
Precondition for acknowledgement of operator safety is the signal "Operator safety assured" set in the BS bit.
Note: If the “BS” signal is acknowledged by the system, this must be specified under Hardware options in the safety configuration. Information is contained in the Operating and Programming Instructions for System Integrators.
0 = operator safety has not been acknowledged
Edge 0 ->1 = operator safety has been acknowledged |
| 4 | SHS1 | Safety STOP 1 (all axes)
- FF (motion enable) is set to 0.
- Voltage US2 is switched off.
- AF (drives enable) is set to 0 after 1.5 s.
Cancelation of this function does not require acknowledgement.
This function is not permissible for the EMERGENCY STOP function.
0 = safety stop is active
1 = safety stop is not active |
| 5 | SHS2 | Safety STOP 2 (all axes)
- FF (motion enable) is set to 0.
- Voltage US2 is switched off.
Cancelation of this function does not require acknowledgement.
This function is not permissible for the EMERGENCY STOP function.
0 = safety stop is active
1 = safety stop is not active |
| 6 | RES | - |
| 7 | RES | - |
Input byte 1

<table>
<thead>
<tr>
<th>Bit</th>
<th>Signal</th>
<th>Description</th>
</tr>
</thead>
</table>
| 0 | US2 | Supply voltage US2 (signal for switching the second supply voltage, US2, without battery backup)
 | | If this output is not used, it should be set to 0.
 | | 0 = switch off US2
 | | 1 = switch on US2
 | | **Note:** Whether and how input US2 is used must be specified under **Hardware options** in the safety configuration. Information is contained in the Operating and Programming Instructions for System Integrators. |
| 1 | SBH | Safe operational stop (all axes)
 | | Precondition: All axes are stationary
 | | Cancelation of this function does not require acknowledgement.
 | | This function is not permissible for the EMERGENCY STOP function.
 | | 0 = safe operational stop is active.
 | | 1 = safe operational stop is not active. |
| 2 | RES | Reserved 11
 | | The value 1 must be assigned to the input. |
| 3 | RES | Reserved 12
 | | The value 1 must be assigned to the input. |
| 4 | RES | Reserved 13
 | | The value 1 must be assigned to the input. |
| 5 | RES | Reserved 14
 | | The value 1 must be assigned to the input. |
| 6 | RES | Reserved 15
 | | The value 1 must be assigned to the input. |
| 7 | SPA | Confirmation of controller shutdown.
 | | The system confirms that it has received the shutdown signal. A second after the “SP” signal has been set by the controller, the requested action is executed, without the need for confirmation from the PLC, and the controller shuts down.
 | | 0 = confirmation is not active
 | | 1 = confirmation is active |
Output byte 0

<table>
<thead>
<tr>
<th>Bit</th>
<th>Signal</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>NHL</td>
<td>Local E-STOP (local E-STOP triggered)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>0 = local E-STOP is active</td>
</tr>
<tr>
<td></td>
<td></td>
<td>1 = local E-STOP is not active</td>
</tr>
<tr>
<td>1</td>
<td>AF</td>
<td>Drives enable (the internal safety controller in the KRC has enabled the drives so that they can be switched on)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>0 = drives enable is not active (the robot controller must switch the drives off)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>1 = drives enable is active (the robot controller must switch the drives to servo-control)</td>
</tr>
<tr>
<td>2</td>
<td>FF</td>
<td>Motion enable (the internal safety controller in the KRC has enabled robot motions)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>0 = motion enable is not active (the robot controller must stop the current motion)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>1 = motion enable is active (the robot controller may trigger a motion)</td>
</tr>
<tr>
<td>3</td>
<td>ZS</td>
<td>One of the enabling switches is in the center position (enabling in test mode)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>0 = enabling is not active</td>
</tr>
<tr>
<td></td>
<td></td>
<td>1 = enabling is active</td>
</tr>
<tr>
<td>4</td>
<td>PE</td>
<td>The signal “Peri enabled” is set to 1 (active) if the following conditions are met:</td>
</tr>
<tr>
<td></td>
<td></td>
<td>- Drives are activated.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>- Safety controller motion enable signal present.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>- The message “Operator safety open” must not be active.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>(>>> “Signal “Peri enabled” (PE)” Page 33)</td>
</tr>
<tr>
<td>5</td>
<td>AUT</td>
<td>The manipulator is in AUT or AUT EXT mode.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>0 = AUT or AUT EXT mode is not active</td>
</tr>
<tr>
<td></td>
<td></td>
<td>1 = AUT or AUT EXT mode is active</td>
</tr>
<tr>
<td>6</td>
<td>T1</td>
<td>The manipulator is in Manual Reduced Velocity mode.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>0 = T1 mode is not active</td>
</tr>
<tr>
<td></td>
<td></td>
<td>1 = T1 mode is active</td>
</tr>
<tr>
<td>7</td>
<td>T2</td>
<td>The manipulator is in Manual High Velocity mode.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>0 = T2 mode is not active</td>
</tr>
<tr>
<td></td>
<td></td>
<td>1 = T2 mode is active</td>
</tr>
</tbody>
</table>

Output byte 1

<table>
<thead>
<tr>
<th>Bit</th>
<th>Signal</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>NHE</td>
<td>External E-STOP has been triggered.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>0 = external E-STOP is active</td>
</tr>
<tr>
<td></td>
<td></td>
<td>1 = external E-STOP is not active</td>
</tr>
<tr>
<td>1</td>
<td>BS</td>
<td>Operator safety</td>
</tr>
<tr>
<td></td>
<td></td>
<td>0 = operator safety is not assured</td>
</tr>
<tr>
<td></td>
<td></td>
<td>1 = operator safety is assured (input BS = 1 and, if configured, input QBS acknowledged)</td>
</tr>
</tbody>
</table>
The signal “Peri enabled” is set to 1 (active) if the following conditions are met:
- Drives are switched on.
- Safety controller motion enable signal present.
- The message “Operator safety open” must not be active.
 This message is only active in the modes T1 and T2.

“Peri enabled” in conjunction with the signal “Safe operational stop”
- In the case of activation of the signal “Safe operational stop” during the motion:
 - Error -> braking with Stop 0. “Peri enabled” eliminated.
 - Activation of the signal “Safe operational stop” with the manipulator stationary:
 - Release the brakes, switch drives to servo-control and monitor for restart.
 - “Peri enabled” remains active.
 - Signal “Motion enable” remains active.
 - US2 voltage (if present) remains active.
 - Signal “Peri enabled” remains active.

“Peri enabled” in conjunction with the signal “Safety stop 2”
- In the case of activation of the signal “Safety stop 2”:
 - Stop 2 of the manipulator.

<table>
<thead>
<tr>
<th>Bit</th>
<th>Signal</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>2</td>
<td>SHS1</td>
<td>Safety stop 1 (all axes)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>0 = Safety stop 1 is not active</td>
</tr>
<tr>
<td></td>
<td></td>
<td>1 = Safety stop 1 is active (safe state reached)</td>
</tr>
<tr>
<td>3</td>
<td>SHS2</td>
<td>Safety stop 2 (all axes)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>0 = Safety stop 2 is not active</td>
</tr>
<tr>
<td></td>
<td></td>
<td>1 = Safety stop 2 is active (safe state reached)</td>
</tr>
<tr>
<td>4</td>
<td>RES</td>
<td>Reserved 13</td>
</tr>
<tr>
<td>5</td>
<td>RES</td>
<td>Reserved 14</td>
</tr>
<tr>
<td>6</td>
<td>PSA</td>
<td>System communication active (display of state of robot controller as CIP Safety bus device)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Precondition: EtherNet/IP must be installed on the controller</td>
</tr>
<tr>
<td></td>
<td></td>
<td>0 = robot controller on CIP Safety bus is not active</td>
</tr>
<tr>
<td></td>
<td></td>
<td>1 = robot controller on CIP Safety bus is active</td>
</tr>
<tr>
<td>7</td>
<td>SP</td>
<td>Controller is being shut down (the robot controller announces termination of the CIP Safety connection)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>If the PLC transmits the SPA signal as confirmation after receiving the SP signal, PSA is set to 0 and the controller is shut down.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>One second after the SP signal has been set, the PSA output is reset by the robot controller, without confirmation from the PLC, and the controller is shut down.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>0 = announcement of termination of connection is not active</td>
</tr>
<tr>
<td></td>
<td></td>
<td>1 = announcement of termination of connection is active</td>
</tr>
</tbody>
</table>

信号“Peri enabled”（PE）
Signal “Drive enable” remains active.
- Brakes remain released.
- Manipulator remains under servo-control.
- Monitoring for restart active.
- Signal “Motion enable” is deactivated.
- US2 voltage (if present) is deactivated.
- Signal “Peri enabled” is deactivated.

5.9.3 SafeOperation via CIP Safety (optional)

Information on this topic is contained in the KUKA.SafeOperation documentation.
6 Operation

6.1 Coupling/decoupling devices

For certain applications, e.g. tool change, it is necessary to couple and decouple devices. Coupling and decoupling can be carried out via the HMI or in KRL.

Decoupling

Properties of decoupled devices:

- If decoupled devices are disconnected from EtherNet/IP or the power supply, no error is triggered.
- All I/O operations on decoupled devices remain without effect.
- Decoupled devices cannot carry out error treatment in the case of read/write errors.
- The device inputs are set to zero on decoupling.

Coupling

The IOCTL function is executed synchronously. It only returns when the device is functional and can be written to once again.

If a coupled device is not functional, e.g. because it is disconnected from the bus or supply voltage, a message is displayed after a default timeout of 10 s.

Is Active

The option Is Active affects the way the robot controller reacts to a decoupled device in the event of a cold start or I/O reconfiguration. The option Is Active can be set in the device properties in WorkVisual.

(>>> 5.4.1.2 "Device properties" Page 16)

<table>
<thead>
<tr>
<th>Device state</th>
<th>Is Active: Enabled</th>
<th>Is Active: Disabled</th>
</tr>
</thead>
<tbody>
<tr>
<td>Device coupled</td>
<td>No error message</td>
<td>No error message</td>
</tr>
<tr>
<td>Device decoupled</td>
<td>Error message</td>
<td>No error message</td>
</tr>
</tbody>
</table>

6.1.1 Coupling/decoupling devices via the HMI

Procedure

1. Select the menu sequence Display > Variable > Single.
2. In the Name box, enter:
 - To decouple: =IOCTL("EIP-SCANNER",60,[Device number])
 - To couple: =IOCTL("EIP-SCANNER",50,[Device number])
3. Confirm by pressing the Enter key. The device is coupled or decoupled.

Description

[Device number]: The device number is displayed in WorkVisual in the Number box in the device properties.

(>>> 5.4.1.2 "Device properties" Page 16)

6.1.2 Coupling/decoupling devices via KRL

Syntax

Decoupling:

```
RET =IOCTL("EIP-SCANNER",60,[Device number])
```

Coupling:

```
RET =IOCTL("EIP-SCANNER",50,[Device number])
```
Description

Device number: The device number is displayed in WorkVisual in the **Number** box in the device properties.

(>>> 5.4.1.2 "Device properties" Page 16)

Return values for RET:

<table>
<thead>
<tr>
<th>Value</th>
<th>Meaning</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>IOCTL was executed successfully.</td>
</tr>
<tr>
<td>1</td>
<td>Timeout</td>
</tr>
<tr>
<td>2</td>
<td>IOCTL contains an incorrect parameter.</td>
</tr>
</tbody>
</table>

Examples

Here the device with the number 003 is decoupled, depending on the tool used.

```plaintext
...  
IF (NEXT_TOOL == GRIPPER_1) THEN  
  RET = IOCTL("EIP-SCANNER",60,3)  
ENDIF  
...
```

The timeout for coupling/decoupling is set by default to 10 s. This default value can be changed. Here the value is set to 5000 ms:

```plaintext
RET = IOCTL("EIP-SCANNER",1001,5000)
```

6.2 Enabling/disabling Quick Connect

When a device is coupled or run up, it must reach its operational state as quickly as possible. A normal device can require up to 10 seconds for this. With Quick Connect, the devices reach their operational state in less than a second. This allows tools to be changed more quickly. Quick Connect can be enabled/disabled via the HMI or KRL.

Quick Connect can only be enabled for devices that support Quick Connect.

![Fig. 6-1: Coupling a device with Quick Connect](image-url)
6.2.1 Enabling/disabling Quick Connect via HMI

Procedure
1. Select the menu sequence **Display > Variable > Single**.
2. In the **Name** box, enter:
 - To enable: =IOCTL("EIP-SCANNER",1002,[Device number])
 - To disable: =IOCTL("EIP-SCANNER",1003,[Device number])
3. Confirm by pressing the Enter key. Quick Connect is enabled or disabled.

Description
[Device number]: The device number is displayed in WorkVisual in the **Number** box in the device properties.

(>>> 5.4.1.2 "Device properties" Page 16)

6.2.2 Enabling/disabling Quick Connect via KRL

Syntax
Enable:
RET =IOCTL("EIP-SCANNER",1002,[Device number])

Disable:
RET =IOCTL("EIP-SCANNER",1003,[Device number])

Description
[Device number]: The device number is displayed in WorkVisual in the **Number** box in the device properties.

(>>> 5.4.1.2 "Device properties" Page 16)

Return values for RET:

<table>
<thead>
<tr>
<th>Value</th>
<th>Meaning</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>IOCTL was executed successfully.</td>
</tr>
<tr>
<td>1</td>
<td>Timeout</td>
</tr>
<tr>
<td>2</td>
<td>IOCTL contains an incorrect parameter.</td>
</tr>
</tbody>
</table>

6.3 Resetting the EtherNet/IP driver

Description
A reset of the EtherNet/IP driver can be carried out via the smartHMI. A reset causes all driver files to be reloaded. Changes made in these files are applied.
Precondition

- EtherNet/IP scanner and/or adapter are configured and wired.
- “Expert” user group

Procedure

1. In the main menu, select Configuration > Inputs/outputs > I/O drivers.
2. Select the State tab and press Reset in the Actions column.
7 Diagnosis

7.1 Displaying diagnostic data

The diagnostic data can also be displayed in WorkVisual. Information about procedures in WorkVisual is contained in the WorkVisual documentation.

Procedure
1. Select Diagnosis > Diagnostic monitor in the main menu.
2. Select the desired module in the Module box.
Diagnostic data are displayed for the selected module.

Description
Diagnostic data can be displayed for the following modules:
- EtherNet/IP scanner (EIP-SCANNER)
- EtherNet/IP adapter (EIP-ADAPTER)
- EtherNet/IP device (scanner device (device name))
- EtherNet/IP local slave (local slave (name))
- EtherNet/IP local safety slave (CIP Safety)
- EtherNet/IP I/O driver (EIPIODRIVER)

7.1.1 EtherNet/IP scanner (EIP-SCANNER)

<table>
<thead>
<tr>
<th>Name</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Input size [Bytes]</td>
<td>Input size of the I/O map of the scanner in bytes</td>
</tr>
<tr>
<td>Output size [Bytes]</td>
<td>Output size of the I/O map of the scanner in bytes</td>
</tr>
<tr>
<td>Scanner bus error counter</td>
<td>Number of bus errors of the scanner</td>
</tr>
<tr>
<td>Asynchronous data</td>
<td>Applications that can exchange asynchronous data with the EtherNet/IP driver</td>
</tr>
</tbody>
</table>

7.1.2 EtherNet/IP adapter (EIP-ADAPTER)

<table>
<thead>
<tr>
<th>Name</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Input size [Bytes]</td>
<td>Input size of the I/O map of the adapter in bytes</td>
</tr>
<tr>
<td>Output size [Bytes]</td>
<td>Output size of the I/O map of the adapter in bytes</td>
</tr>
<tr>
<td>Adapter bus error counter</td>
<td>Number of bus errors of the adapter</td>
</tr>
<tr>
<td>Asynchronous data</td>
<td>Applications that can exchange asynchronous data with the EtherNet/IP driver</td>
</tr>
<tr>
<td>Scanner bus error bit</td>
<td>Status bit that is sent to the PLC in the event of a bus error</td>
</tr>
</tbody>
</table>

7.1.3 EtherNet/IP device

<table>
<thead>
<tr>
<th>Name</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Device name</td>
<td>Name of the device</td>
</tr>
<tr>
<td>Device ID</td>
<td>ID of the device</td>
</tr>
<tr>
<td>IP</td>
<td>IP address of the device</td>
</tr>
</tbody>
</table>
| Device activated | ■ TRUE: The setting was made during configuration that the device should be coupled during start-up.
 ■ FALSE: The setting was made during configuration that the device should not be coupled during start-up. |
7.1.4 Ethernet/IP local slave

<table>
<thead>
<tr>
<th>Name</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Name of local slave</td>
<td>Name of the local slave</td>
</tr>
<tr>
<td>Local slave ID</td>
<td>ID of the local slave</td>
</tr>
<tr>
<td>Connection-ID</td>
<td>EtherNet/IP connection number</td>
</tr>
</tbody>
</table>

Table:

<table>
<thead>
<tr>
<th>Name</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>HMI Message number</td>
<td>Internal HMI message number of the displayed message</td>
</tr>
<tr>
<td>Diagnose connection active</td>
<td>1: Diagnosis is active. 0: Diagnosis is not active.</td>
</tr>
<tr>
<td>Connection error counter</td>
<td>Number of connection errors</td>
</tr>
<tr>
<td>Connection-ID</td>
<td>EtherNet/IP connection number</td>
</tr>
</tbody>
</table>
| Connection type | IO_CONNECTION: Cyclical connection (Rack Optimized, Direct Input Only or Exclusive Owner)
 CONFIGURATION_CONNECTION: Only for EtherNet/IP management tasks |
| Input size [Bytes] | Input size of the I/O map of the connection in bytes |
| Output size [Bytes] | Output size of the I/O map of the connection in bytes |
| Connection activated | 1: Connection has been activated. 0: Connection has not been activated. |
| Connection state (Health-Bit) | 1: Connection OK 0: Connection terminated |
| Input state | 0: Connection OK |
| Output state | 33: Timeout receiving data 53: Connection active, but no data evaluated. |
| | 54: Connecting, but no I/O data received yet. |
| | 58: No connection (TCP) 65: No connection (CIP) |
| | 68: Connecting |
| | 70: No connection (EPIC) 77: Connection terminated |
| EIP Production packet counter | Number of data packets sent via this connection. |
| EIP Consumption packet counter| Number of data packets received via this connection. |
| CIP Status | 0: No error |
| Extended Status | Note: The description of the other values can be found in the specifications of the Common Industrial Protocol. |
| CCO Status General | |
| CCO Status Reserved | |
| CCO Status Extended | |
| Production Connection ID | Internal connection IDs |
| Consumption Connection ID | |
| Originator-Target API [µs] | Real refresh rate of the Originator-Target connection |
| Target-Originator API [µs] | Real refresh rate of the Target-Originator connection |
| Originator-Target RPI [µs] | Configured refresh rate of the Originator-Target connection |
| Target-Originator RPI [µs] | Configured refresh rate of the Target-Originator connection |

Note: Further information about the causes of status 54, 65, 68 and 70 can be found in the specifications of the Common Industrial Protocol.
7.1.5 Ethernet/IP local safety slave

<table>
<thead>
<tr>
<th>Name</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>CIP Safety Slave-ID</td>
<td>ID of the local safety slave</td>
</tr>
<tr>
<td>Input data length</td>
<td>Input size of the I/O map of the local safety slave in bytes</td>
</tr>
<tr>
<td>Output data length</td>
<td>Output size of the I/O map of the local safety slave in bytes</td>
</tr>
<tr>
<td>IO-Consumption packet counter</td>
<td>Number of data packets received via this connection.</td>
</tr>
<tr>
<td>IO-Production packet counter</td>
<td>Number of data packets sent via this connection.</td>
</tr>
<tr>
<td>IO-Consumption error counter</td>
<td>Number of faulty data packets received via this connection.</td>
</tr>
<tr>
<td>IO-Production error counter</td>
<td>Number of faulty data packets sent via this connection.</td>
</tr>
<tr>
<td>OT Connection-ID error counter</td>
<td>Number of faulty Originator-Target connection IDs</td>
</tr>
<tr>
<td>TO Connection-ID error counter</td>
<td>Number of faulty Target-Originator connection IDs</td>
</tr>
<tr>
<td>Name</td>
<td>Description</td>
</tr>
<tr>
<td>-------------------------------</td>
<td>---</td>
</tr>
<tr>
<td>Input buffer run state</td>
<td>- Initializing: Buffer is being initialized</td>
</tr>
<tr>
<td></td>
<td>- OK: Buffer is OK and data exchange is functioning correctly</td>
</tr>
<tr>
<td></td>
<td>- Error: See error code</td>
</tr>
<tr>
<td>Note: The error codes are to be found under Input buffer error code.</td>
<td></td>
</tr>
<tr>
<td>Input buffer error code</td>
<td>- No error: No error present</td>
</tr>
<tr>
<td></td>
<td>- Invalid pointer: The offsets of the data in the buffer are invalid.</td>
</tr>
<tr>
<td></td>
<td>- Size of data too large: The IO data packet exceeds the permissible data length.</td>
</tr>
<tr>
<td>Output buffer run state</td>
<td>- Initializing: Buffer is being initialized</td>
</tr>
<tr>
<td></td>
<td>- OK: Buffer is OK and data exchange is functioning correctly</td>
</tr>
<tr>
<td></td>
<td>- Error: See error code</td>
</tr>
<tr>
<td>Note: The error codes are to be found under Output buffer error code.</td>
<td></td>
</tr>
<tr>
<td>Output buffer error code</td>
<td>- No error: No error present</td>
</tr>
<tr>
<td></td>
<td>- Invalid pointer: The offsets of the data in the buffer are invalid.</td>
</tr>
<tr>
<td></td>
<td>- Size of data too large: The IO data packet exceeds the permissible data length.</td>
</tr>
<tr>
<td>CIP Safety State</td>
<td>- OFFLINE: CIP Safety stack has not been started.</td>
</tr>
<tr>
<td></td>
<td>- ONLINE: CIP Safety stack has been initialized.</td>
</tr>
<tr>
<td>CIP Safety Supervisor State</td>
<td>Note: The description of the states can be found in the specification “THE CIP NETWORKS LIBRARY, Volume 5 CIP Safety”.</td>
</tr>
<tr>
<td>SNN Date</td>
<td>Date of the Safety Network Numbers</td>
</tr>
<tr>
<td></td>
<td>Note: Further information can be found in the specification “THE CIP NETWORKS LIBRARY, Volume 5 CIP Safety”.</td>
</tr>
<tr>
<td>SNN Time</td>
<td>Time of the Safety Network Numbers</td>
</tr>
<tr>
<td></td>
<td>Note: Further information can be found in the specification “THE CIP NETWORKS LIBRARY, Volume 5 CIP Safety”.</td>
</tr>
<tr>
<td>Module LED State</td>
<td>Note: The description of the states can be found in the specification “THE CIP NETWORKS LIBRARY, Volume 5 CIP Safety”.</td>
</tr>
<tr>
<td>Network LED State</td>
<td>Note: The description of the states can be found in the specification “THE CIP NETWORKS LIBRARY, Volume 5 CIP Safety”.</td>
</tr>
<tr>
<td>Input connection state</td>
<td>- Not allocated: CIP Safety connection is not initialized.</td>
</tr>
<tr>
<td></td>
<td>- Initializing: CIP Safety connection is being initialized.</td>
</tr>
<tr>
<td></td>
<td>- Established: CIP Safety connection is functioning correctly.</td>
</tr>
<tr>
<td></td>
<td>- Lost: CIP Safety connection has been terminated.</td>
</tr>
</tbody>
</table>
7.1.6 EtherNet/IP I/O driver (EIPIODRIVER)

<table>
<thead>
<tr>
<th>Name</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>EIPIODriver</td>
<td>Name of the driver</td>
</tr>
<tr>
<td>IP</td>
<td>Data from the network configuration of EtherNet/IP</td>
</tr>
<tr>
<td>Subnet mask</td>
<td>Address of the network adapter via which the EtherNet/IP communicates with scanners, devices, etc.</td>
</tr>
<tr>
<td>Gateway</td>
<td>Address of the network adapter via which the EtherNet/IP communicates with scanners, devices, etc.</td>
</tr>
<tr>
<td>MAC address</td>
<td>Address of the network adapter via which the EtherNet/IP communicates with scanners, devices, etc.</td>
</tr>
<tr>
<td>Network interface name</td>
<td>Name of the network interface</td>
</tr>
<tr>
<td>Network interface number</td>
<td>Number of the network interface</td>
</tr>
<tr>
<td>Stack version</td>
<td>Version of the software stack</td>
</tr>
<tr>
<td>User version</td>
<td>Version of the KUKA driver</td>
</tr>
<tr>
<td>Stack state</td>
<td>NON_EXISTENT, IDLE: Ethernet/IP stack has not been initialized.</td>
</tr>
<tr>
<td></td>
<td>OFFLINE, IDLE: Ethernet/IP stack has been initialized and configured.</td>
</tr>
<tr>
<td></td>
<td>ONLINE, IDLE: Ethernet/IP stack has opened all communication channels.</td>
</tr>
<tr>
<td></td>
<td>IO_RUNNING, IDLE: Ethernet/IP stack has been started; outputs are not being set.</td>
</tr>
<tr>
<td></td>
<td>IO_RUNNING, RUN: Ethernet/IP stack has been started; inputs and outputs are being set.</td>
</tr>
<tr>
<td>IO Production packet counter</td>
<td>Number of data packets that have been sent.</td>
</tr>
<tr>
<td>IO Consumption packet counter</td>
<td>Number of data packets that have been received.</td>
</tr>
<tr>
<td>IO Production packet errors</td>
<td>Number of faulty data packets that have been sent.</td>
</tr>
<tr>
<td>IO Consumption packet errors</td>
<td>Number of faulty data packets that have been received.</td>
</tr>
<tr>
<td>Explicit message transmission counter</td>
<td>Number of messages sent with the existing connection.</td>
</tr>
<tr>
<td>Explicit message receive counter</td>
<td>Number of messages received with the existing connection.</td>
</tr>
<tr>
<td>UCMM transmission counter</td>
<td>Number of messages sent without an existing connection.</td>
</tr>
<tr>
<td>UCMM receive counter</td>
<td>Number of messages received without an existing connection.</td>
</tr>
<tr>
<td>Diagnostic flag</td>
<td>1: Diagnosis is active.</td>
</tr>
<tr>
<td></td>
<td>0: Diagnosis is not active.</td>
</tr>
</tbody>
</table>

7.2 Advanced device diagnosis

There is an additional option for diagnosis of EtherNet/IP devices in WorkVisual.

Precondition

- The device to be diagnosed is connected and active.
Procedure

- Right-click on the device in the tree structure and select **Diagnosis**... from the context menu.
 A window opens. Local slaves, devices and the connection type are displayed in the tree structure.

Description

Every element in the tree structure has an icon that indicates the status of the connection:

- **Green icon**: Connection OK
- **Red icon**: An error has occurred

Clicking on an element in the tree structure displays the following tabs:

- **Device**: *Ethernet Diagnostic*
- **Local slave**: *Local Slave Diagnostic; I/O Values*
- **Connection type**: *EIP Connection Diagnostic; I/O Values*

Various diagnostic data are displayed on the *Ethernet Diagnostic*, *Local Slave Diagnostic* and *EIP Connection Diagnostic* tabs. Information on the data is displayed in the **Description** box by clicking on them.

The I/O data are shown in hexadecimal notation on the **I/O Values** tab. This allows errors in the I/O mapping to be detected. The length and status of the I/O data are also displayed.

If the check box **Refresh every 500 ms** is activated, the diagnostic data are refreshed at intervals of 500 ms.
8 Messages

<table>
<thead>
<tr>
<th>Message number / ID / type</th>
<th>Message text / cause</th>
</tr>
</thead>
<tbody>
<tr>
<td>13063 / M_EIP_BUSXML</td>
<td>Error reading [name of configuration file]</td>
</tr>
<tr>
<td>Status message</td>
<td>Cause: The configuration file contains errors.</td>
</tr>
<tr>
<td>13065 / M_EIP_CFG_ERROR</td>
<td>Error configuring Ethernet/IP stack with the file [name of configuration file]</td>
</tr>
<tr>
<td>Status message</td>
<td>Cause: The binary configuration file contains errors.</td>
</tr>
<tr>
<td>13071 / M_EIP_CHG_IP</td>
<td>EIP I/O driver will modify the configuration of the KLI and restart the EIP stack</td>
</tr>
<tr>
<td>Notification message</td>
<td></td>
</tr>
<tr>
<td>13069 / M_EIP_CHG_IP_FAIL</td>
<td>Error on modification of the IP configuration of the KLI and restart of the EIP stack</td>
</tr>
<tr>
<td>Status message</td>
<td>Cause: IP configuration could not be modified.</td>
</tr>
<tr>
<td>13070 / M_EIP_CHG_IP_OK</td>
<td>EIP I/O driver has modified the configuration of the KLI and started the EIP stack</td>
</tr>
<tr>
<td>Notification message</td>
<td></td>
</tr>
<tr>
<td>13073 / M_EIP_ERROR_IP</td>
<td>EIP I/O driver cannot determine the IP address of the KLI</td>
</tr>
<tr>
<td>Status message</td>
<td>Possible causes:</td>
</tr>
<tr>
<td></td>
<td>- KLI is not configured.</td>
</tr>
<tr>
<td></td>
<td>- DHCP is active, but no IP configuration from the DHCP is available yet.</td>
</tr>
<tr>
<td>13072 / M_EIP_ERROR_MAC</td>
<td>EIP I/O driver cannot determine the MAC address of the KLI</td>
</tr>
<tr>
<td>Status message</td>
<td>Cause: KLI is not configured or is incorrectly configured.</td>
</tr>
<tr>
<td>13074 / M_EIP_ERROR_SUBNET</td>
<td>EIP I/O driver cannot determine the subnet mask of the KLI</td>
</tr>
<tr>
<td>Status message</td>
<td>Possible causes:</td>
</tr>
<tr>
<td></td>
<td>- KLI is not configured.</td>
</tr>
<tr>
<td></td>
<td>- DHCP is active, but no IP configuration from the DHCP is available yet.</td>
</tr>
<tr>
<td>13064 / M_EIP_INIT_ERROR</td>
<td>Ethernet/IP stack cannot be set to Offline state</td>
</tr>
<tr>
<td>Status message</td>
<td>Cause: KLI is incorrectly configured or there is no IP configuration.</td>
</tr>
<tr>
<td>13066 / M_EIP_ONLINE_ERROR</td>
<td>Ethernet/IP stack cannot be set to Online state</td>
</tr>
<tr>
<td>Status message</td>
<td>Cause: KLI is incorrectly configured or the bus configuration is incorrect.</td>
</tr>
<tr>
<td>13067 / M_EIP_START_ERROR</td>
<td>Ethernet/IP stack cannot be set to Running state</td>
</tr>
<tr>
<td>Status message</td>
<td>Cause: KLI is incorrectly configured or the bus configuration is incorrect.</td>
</tr>
<tr>
<td>10047 / M_EIP_ADT_ERROR</td>
<td>Connection between PLC and [device name] terminated.</td>
</tr>
<tr>
<td>Status message</td>
<td>Possible causes:</td>
</tr>
<tr>
<td></td>
<td>- Power supply and/or network connection was interrupted.</td>
</tr>
<tr>
<td></td>
<td>- Performance problems (number of devices, cycle times).</td>
</tr>
<tr>
<td>Note:</td>
<td>This message is only displayed during operation.</td>
</tr>
<tr>
<td>Message number / ID / type</td>
<td>Message text / cause</td>
</tr>
<tr>
<td>---------------------------</td>
<td>----------------------</td>
</tr>
</tbody>
</table>
| 10046 / M_EIP_ADTSSTART_ERROR | Timeout establishing connection between PLC and [device name]
Possible causes:
- Power supply and/or network connection was interrupted.
- Performance problems (number of devices, cycle times).
Note: This message is only displayed after a cold start. |
| 10053 / M_EIP_CONN_ERROR | Connection ID [ID number] (Slot [slot number]) to EIP device [device name] terminated
Cause: Power supply and/or network connection was interrupted. |
| 10054 / M_EIP_CONNSTART_ERROR | Timeout establishing connection ID [ID number] (Slot [slot number]) to EIP device [device name]
Possible causes:
- Power supply and/or network connection was interrupted.
- Performance problems (number of devices, cycle times). |
| 10045 / M_EIP_DEV_ERROR | Connection to EIP device [device name] terminated
Cause: Power supply and/or network connection was interrupted. |
| 10043 / M_EIP_DEVSTART_ERROR | Timeout establishing connection to EIP device [device name]
Possible causes:
- Power supply and/or network connection was interrupted.
- Performance problems (number of devices, cycle times). |
9 KUKA Service

9.1 Requesting support

Introduction
The KUKA Roboter GmbH documentation offers information on operation and provides assistance with troubleshooting. For further assistance, please contact your local KUKA subsidiary.

Information
The following information is required for processing a support request:

- Model and serial number of the robot
- Model and serial number of the controller
- Model and serial number of the linear unit (if applicable)
- Model and serial number of the energy supply system (if applicable)
- Version of the KUKA System Software
- Optional software or modifications
- Archive of the software
 For KUKA System Software V8: instead of a conventional archive, generate the special data package for fault analysis (via KrcDiag).
- Application used
- Any external axes used
- Description of the problem, duration and frequency of the fault

9.2 KUKA Customer Support

Availability
KUKA Customer Support is available in many countries. Please do not hesitate to contact us if you have any questions.

Argentina
Ruben Costantini S.A. (Agency)
Luis Angel Huergo 13 20
Parque Industrial
2400 San Francisco (CBA)
Argentina
Tel. +54 3564 421033
Fax +54 3564 428877
ventas@costantini-sa.com

Australia
Headland Machinery Pty. Ltd.
Victoria (Head Office & Showroom)
95 Highbury Road
Burwood
Victoria 31 25
Australia
Tel. +61 3 9244-3500
Fax +61 3 9244-3501
vic@headland.com.au
www.headland.com.au
<table>
<thead>
<tr>
<th>Country</th>
<th>Address</th>
<th>Phone Numbers</th>
<th>Email</th>
<th>Website</th>
</tr>
</thead>
<tbody>
<tr>
<td>Belgium</td>
<td>KUKA Automatisering + Robots N.V.</td>
<td>Tel. +32 11 516160 Fax +32 11 526794</td>
<td>info@kuka.be</td>
<td>www.kuka.be</td>
</tr>
<tr>
<td></td>
<td>Centrum Zuid 1031 3530 Houthalen Belgium</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Tel. +32 11 516160 Fax +32 11 526794 info@kuka.be www.kuka.be</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Brazil</td>
<td>KUKA Roboter do Brasil Ltda.</td>
<td>Tel. +55 11 4942-8299 Fax +55 11 2201-7883</td>
<td>info@kuka-roboter.com.br</td>
<td>www.kuka-roboter.com.br</td>
</tr>
<tr>
<td></td>
<td>Travessa Claudio Armando, nº 171</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Bloco 5 - Galpões 51/52 Bairro Assunção</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>CEP 09861-7630 São Bernardo do Campo - SP Brazil</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Tel. +55 11 4942-8299 Fax +55 11 2201-7883 info@kuka-roboter.com.br</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>www.kuka-roboter.com.br</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Chile</td>
<td>Robotec S.A. (Agency)</td>
<td>Tel. +56 2 331-5951 Fax +56 2 331-5952</td>
<td>robotec@robotec.cl</td>
<td>www.robotec.cl</td>
</tr>
<tr>
<td></td>
<td>Santiago de Chile</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Chile</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Tel. +56 2 331-5951 Fax +56 2 331-5952 robotec@robotec.cl</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>www.robotec.cl</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>China</td>
<td>KUKA Robotics China Co., Ltd.</td>
<td>Tel. +86 21 6787-1888 Fax +86 21 6787-1803</td>
<td>www.kuka-robotics.cn</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Songjiang Industrial Zone No. 388 Minshen Road</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Shanghai 201612 China</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Tel. +86 21 6787-1888 Fax +86 21 6787-1803 www.kuka-robotics.cn</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Germany</td>
<td>KUKA Roboter GmbH</td>
<td>Tel. +49 821 797-4000 Fax +49 821 797-1616</td>
<td>info@kuka-roboter.de</td>
<td>www.kuka-roboter.de</td>
</tr>
<tr>
<td></td>
<td>Zugspitzstr. 140 86165 Augsburg</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Germany</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Tel. +49 821 797-4000 Fax +49 821 797-1616 info@kuka-roboter.de</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>www.kuka-roboter.de</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
France
KUKA Automatisme + Robotique SAS
Techvallée
6, Avenue du Parc
91140 Villebon S/Yvette
France
Tel. +33 1 6931660-0
Fax +33 1 6931660-1
commercial@kuka.fr
www.kuka.fr

India
KUKA Robotics India Pvt. Ltd.
Office Number-7, German Centre,
Level 12, Building No. - 9B
DLF Cyber City Phase III
122 002 Gurgaon
Haryana
India
Tel. +91 124 4635774
Fax +91 124 4635773
info@kuka.in
www.kuka.in

Italy
KUKA Roboter Italia S.p.A.
Via Pavia 9/a - int.6
10098 Rivoli (TO)
Italy
Tel. +39 011 959-5013
Fax +39 011 959-5141
kuka@kuka.it
www.kuka.it

Japan
KUKA Robotics Japan K.K.
YBP Technical Center
134 Godo-cho, Hodogaya-ku
Yokohama, Kanagawa
240 0005
Japan
Tel. +81 45 744 7691
Fax +81 45 744 7696
info@kuka.co.jp

Canada
KUKA Robotics Canada Ltd.
6710 Maritz Drive - Unit 4
Mississauga
L5W 0A1
Ontario
Canada
Tel. +1 905 670-8600
Fax +1 905 670-8604
info@kukarobotics.com
www.kuka-robotics.com/canada
Korea
KUKA Robotics Korea Co. Ltd.
RIT Center 306, Gyeonggi Technopark
1271-11 Sa 3-dong, Sangnok-gu
Ansan City, Gyeonggi Do
426-901 Korea
Tel. +82 31 501-1451
Fax +82 31 501-1461
info@kukakorea.com

Malaysia
KUKA Robot Automation Sdn Bhd
South East Asia Regional Office
No. 24, Jalan TPP 1/10
Taman Industri Puchong
47100 Puchong
Selangor
Malaysia
Tel. +60 3 8061-0613 or -0614
Fax +60 3 8061-7386
info@kuka.com.my

Mexico
KUKA de México S. de R.L. de C.V.
Progreso #8
Col. Centro Industrial Puente de Vugas
Tlalnepantla de Baz
54020 Estado de México
Mexico
Tel. +52 55 5203-8407
Fax +52 55 5203-8148
info@kuka.com.mx
www.kuka-robotics.com/mexico

Norway
KUKA Sveiseanlegg + Roboter
Sentrumsvegen 5
2867 Hov
Norway
Tel. +47 61 18 91 30
Fax +47 61 18 62 00
info@kuka.no

Austria
KUKA Roboter Austria GmbH
Vertriebsbüro Österreich
Regensburger Strasse 9/1
4020 Linz
Austria
Tel. +43 732 784752
Fax +43 732 793880
office@kuka-roboter.at
www.kuka-roboter.at
Poland
KUKA Roboter Austria GmbH
Spółka z ograniczoną odpowiedzialnością
Oddział w Polsce
Ul. Porcelanowa 10
40-246 Katowice
Poland
Tel. +48 327 30 32 13 or -14
Fax +48 327 30 32 26
ServicePL@kuka-roboter.de

Portugal
KUKA Sistemas de Automatización S.A.
Rua do Alto da Guerra nº 50
Armazém 04
2910 011 Setúbal
Portugal
Tel. +351 265 729780
Fax +351 265 729782
kuka@mail.telepac.pt

Russia
OOO KUKA Robotics Rus
Webnaja ul. 8A
107143 Moskau
Russia
Tel. +7 495 781-31-20
Fax +7 495 781-31-19
kuka-robotics.ru

Sweden
KUKA Svetsanläggningar + Robotar AB
A. Odhners gata 15
421 30 Västra Frölunda
Sweden
Tel. +46 31 7266-200
Fax +46 31 7266-201
info@kuka.se

Switzerland
KUKA Roboter Schweiz AG
Industriestr. 9
5432 Neuenhof
Switzerland
Tel. +41 44 74490-90
Fax +41 44 74490-91
info@kuka-roboter.ch
www.kuka-roboter.ch
Spain
KUKA Robots IBÉRICA, S.A.
Pol. Industrial
Torrent de la Pastera
Carrer del Bages s/n
08800 Vilanova i la Geltrú (Barcelona)
Spain
Tel. +34 93 8142-353
Fax +34 93 8142-950
Comercial@kuka-e.com
www.kuka-e.com

South Africa
Jendamark Automation LTD (Agency)
76a York Road
North End
6000 Port Elizabeth
South Africa
Tel. +27 41 391 4700
Fax +27 41 373 3869
www.jendamark.co.za

Taiwan
KUKA Robot Automation Taiwan Co., Ltd.
No. 249 Pujong Road
Jungli City, Taoyuan County 320
Taiwan, R. O. C.
Tel. +886 3 4331988
Fax +886 3 4331948
info@kuka.com.tw
www.kuka.com.tw

Thailand
KUKA Robot Automation (M)SdnBhd
Thailand Office
c/o Maccall System Co. Ltd.
49/9-10 Soi Kingkaew 30 Kingkaew Road
Tt. Rachatheva, A. Bangpli
Samutprakarn
10540 Thailand
Tel. +66 2 7502737
Fax +66 2 6612355
atika@ji-net.com
www.kuka-roboter.de

Czech Republic
KUKA Roboter Austria GmbH
Organisation Tschechien und Slowakei
Sezemická 2757/2
193 00 Praha
Horní Počernice
Czech Republic
Tel. +420 22 62 12 27 2
Fax +420 22 62 12 27 0
support@kuka.cz
<table>
<thead>
<tr>
<th>Country</th>
<th>Address</th>
<th>Phone</th>
<th>Fax</th>
<th>Email</th>
<th>Website</th>
</tr>
</thead>
<tbody>
<tr>
<td>Hungary</td>
<td>KUKA Robotics Hungaria Kft.</td>
<td>Tel. +36 24 501609</td>
<td>Fax +36 24 477031</td>
<td>info@kuka-robotics.hu</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Fő út 140</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>2335 Taksony</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Hungary</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>USA</td>
<td>KUKA Robotics Corporation</td>
<td>Tel. +1 866 873-5852</td>
<td>Fax +1 866 329-5852</td>
<td>info@kukarobotics.com</td>
<td>www.kukarobotics.com</td>
</tr>
<tr>
<td></td>
<td>51870 Shelby Parkway</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Shelby Township</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>48315-1787</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Michigan</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>USA</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Tel. +1 866 873-5852</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Fax +1 866 329-5852</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Email info@kukarobotics.com</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Website www.kukarobotics.com</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>UK</td>
<td>KUKA Automation + Robotics</td>
<td>Tel. +44 121 585-0800</td>
<td>Fax +44 121 585-0900</td>
<td>sales@kuka.co.uk</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Hereward Rise</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Halesowen</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>B62 8AN</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>UK</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Tel. +44 121 585-0800</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Fax +44 121 585-0900</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Index

Symbols
- “Chassis/Modules” tab 16
- Ports, configuring 23
- Product description 7

A
- Acyclic, communication 25
- Address setting 15
- Address Setting, tab 15

C
- Chassis/Modules 16
- CIP Safety safety interface 29
- Communication settings, tab 19
- Communication, acyclic 25
- Configuration 13
- Connection type, changing 18
- Coupling, device 35

D
- Decoupling, device 35
- Device diagnosis 43
- Device properties 16
- Device Properties, tab 16
- Diagnosis 39
- Diagnostic data, displaying 39
- Diagnostic monitor (menu item) 39
- Documentation, industrial robot 5

E
- EDS file 6
- EDS files, exporting 24
- EDS files, making available 13
- EtherNet/IP driver, resetting 37

I
- Industrial Ethernet 6
- Installation 11
- Installing EtherNet/IP 11
- Introduction 5

K
- KUKA Customer Support 47

L
- Local Safety Slave, tab 21
- Local Slave, tab 20

M
- Mapping, inputs/outputs 22
- Messages 45
- Module configuration, example 17

O
- Operation 35

P
- Parameters, setting 17
- PLC 6
- PLC, configuring 26

Q
- Quick Connect, disabling 36
- Quick Connect, enabling 36

R
- Robot controller, configuring 25

S
- SafeOperation via CIP Safety 34
- Safety 9
- Safety instructions 5
- Service, KUKA Roboter 47
- Signal “Peri enabled” 33
- Subnet 6
- Subnet mask 6
- Support request 47
- System requirements 11

T
- Target group 5
- Timeout, coupling 36
- Timeout, decoupling 36
- Trademarks 6
- Training 5

U
- Uninstalling EtherNet/IP 12

W
- Warnings 5